login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A364861
Numbers k such that k and k+1 are both S-abundant numbers (A181487).
1
5984, 7424, 21944, 39375, 56924, 77175, 82004, 84524, 89775, 109395, 116655, 158235, 174824, 180495, 185535, 188055, 193544, 200024, 209055, 235935, 238095, 240344, 245024, 250964, 256095, 261260, 262184, 263024, 266475, 279279, 282975, 283815, 294975, 297296
OFFSET
1,1
COMMENTS
De Koninck and Ivić found that the least number k such that k, k+1, and k+2 are 3 consecutive integers that are S-abundant numbers is 171078830 (which is also the first term of A096536).
LINKS
Jean-Marie De Koninck and Aleksandar Ivić, On a sum of divisors problem, Publications de l'Institut Mathématique (Beograd), New Series, Vol. 64 (78) (1998), pp. 9-20.
Wikipedia, Granville number.
MATHEMATICA
seq[kmax_] := Module[{s = {1}, a = {}, sum, q1 = False, q2}, Do[sum = Total[Select[Divisors[k], MemberQ[s, #] &]]; q2 = sum > k; If[!q2, AppendTo[s, k]]; If[q1 && q2, AppendTo[a, k-1]]; q1 = q2, {k, 2, kmax}]; a]; seq[40000]
PROG
(PARI) lista(nmax) = {my(c = 0, s, q1 = 0, q2); for(n=2, nmax, if(sumdiv(n, d, !bittest(c, d)*d) > 2*n, c+=1<<n; q2 = 1, q2 = 0); if(q1 && q2, print1(n-1, ", ")); q1 = q2) } \\ after M. F. Hasler at A181487
CROSSREFS
Subsequence of A181487.
Sequence in context: A176374 A282191 A328327 * A237011 A274362 A233871
KEYWORD
nonn
AUTHOR
Amiram Eldar, Aug 11 2023
STATUS
approved