login
A328329
Lesser of twin primes p such that d(p+1) > d(q+1) for all lessers of twin primes q < p, where d(n) is the number of divisors of n (A000005).
0
3, 5, 11, 29, 59, 179, 239, 419, 1319, 2339, 3119, 3359, 6299, 7559, 21599, 21839, 33599, 35279, 42839, 55439, 100799, 110879, 287279, 415799, 957599, 1621619, 1713599, 1867319, 1940399, 2489759, 3991679, 6652799, 11531519, 18258239, 22822799, 26732159, 28828799
OFFSET
1,1
COMMENTS
The corresponding values of d(p+1) are 3, 4, 6, 8, 12, 18, 20, 24, 32, 36, 40, 48, 54, 64, 72, 80, 84, 90, 96, 120, 126, 144, 160, 192, 216, 240, 252, 256, 270, 288, 320, 384, 432, 448, 480, 512, 576, ...
MATHEMATICA
dm = DivisorSigma[0, 4]; s = {3}; Do[If[!PrimeQ[6n - 1] || !PrimeQ[6n + 1], Continue[]]; d = DivisorSigma[0, 6n]; If[d > dm, dm = d; AppendTo[s, 6n - 1]], {n, 1, 10^5}]; s
CROSSREFS
KEYWORD
nonn
AUTHOR
Amiram Eldar, Oct 12 2019
STATUS
approved