login
A328331
a(n) is the least k such that the average number of unitary divisors of {1..k} is >= n.
6
1, 6, 35, 190, 1015, 5304, 27417, 142142, 736782, 3816852, 19774690, 102446730, 530743749, 2749606626, 14244797910
OFFSET
1,2
COMMENTS
The unitary version of A085829.
FORMULA
Lim_{n->oo} a(n+1)/a(n) = exp(zeta(2)) = exp(Pi^2/6) = 5.180668... (since A064608(n) ~ n*log(n)/zeta(2)).
EXAMPLE
a(2) = 6 because the average number of unitary divisors of {1..6} is A064608(6)/6 = 13/6 > 2.
MATHEMATICA
seq={}; s = 0; k = 1; Do[While[s += 2^PrimeNu[k]; s < k*n, k++]; AppendTo[seq, k]; k++, {n, 1, 10}]; seq
CROSSREFS
KEYWORD
nonn,more
AUTHOR
Amiram Eldar, Oct 22 2019
STATUS
approved