login
A019293
Let sigma_m (n) be result of applying sum-of-divisors function m times to n; call n (m,k)-perfect if sigma_m (n) = k*n; sequence gives the (4,k)-perfect numbers.
6
1, 2, 3, 4, 6, 8, 10, 12, 15, 18, 21, 24, 26, 32, 39, 42, 60, 65, 72, 84, 96, 160, 182, 336, 455, 512, 672, 896, 960, 992, 1023, 1280, 1536, 1848, 2040, 2688, 4092, 5472, 5920, 7808, 7936, 10416, 11934, 16352, 16380, 18720, 20384, 21824, 23424, 24564, 29127, 30240, 33792, 36720, 41440
OFFSET
1,2
COMMENTS
Similarly to A019278, 2 and sigma(2) are both terms, and this can happen also for further iterations of sigma on known terms, thus providing new terms outside the current known range. - Michel Marcus, May 01 2017
Also it occurs that many divisors of A019278 are terms of this sequence. - Michel Marcus, May 28 2017
LINKS
Graeme L. Cohen and Herman J. J. te Riele, Iterating the sum-of-divisors function, Experimental Mathematics, 5 (1996), pp. 93-100.
EXAMPLE
10 is a term because applying sigma four times we see that 10 -> 18 -> 39 -> 168 -> 120, and 120 = 12*10. So 10 is a (4,12)-perfect number.
PROG
(PARI) isok(n) = denominator(sigma(sigma(sigma(sigma(n))))/n) == 1; \\ Michel Marcus, Apr 29 2017
CROSSREFS
KEYWORD
nonn
EXTENSIONS
Corrected by Michel Marcus, Apr 29 2017
STATUS
approved