Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I M0551 N0199 #86 Jan 18 2024 01:24:15
%S 1,2,3,4,6,8,10,12,15,18,21,24,28,32,36,40,45,50,55,60,66,72,78,84,91,
%T 98,105,112,120,128,136,144,153,162,171,180,190,200,210,220,231,242,
%U 253,264,276,288,300,312,325,338,351,364,378,392,406,420,435,450,465
%N Expansion of 1/((1-x)^2*(1-x^4)) = 1/( (1+x)*(1+x^2)*(1-x)^3 ).
%C First differences are A008621. - _Amarnath Murthy_, Apr 26 2004
%C a(n) = least k > a(n-1) such that k + a(n-1) + a(n-2) + a(n-3) is triangular. - _Amarnath Murthy_, Apr 26 2004
%C From _Jon Perry_, Nov 16 2010: (Start)
%C Column sums of the following array:
%C 1 2 3 4 5 6 7 8 9...
%C 1 2 3 4 5...
%C 1...
%C --------------------
%C 1 2 3 4 6 8 10 12 15 (End)
%C A001972(n) is the number of 3-tuples (w,x,y) having all terms in {0,...,n} and 2=4x+y. - _Clark Kimberling_, Jun 04 2012
%C Number of partitions of n into parts 1 (of two sorts) and 4 (of one sort). - _Joerg Arndt_, Aug 08 2013
%C In the polynomial sequence s(n) = (x*s(n-1)*s(n-4) + y*s(n-2)*s(n-3))/s(n-5), with s(k) = 1 for k = 0..4, the leading term of s(n+5) is x^a(n). See A333260. - _Michael Somos_, Mar 13 2020
%D A. Cayley, Numerical tables supplementary to second memoir on quantics, Collected Mathematical Papers. Vols. 1-13, Cambridge Univ. Press, London, 1889-1897, Vol. 2, pp. 276-281.
%D N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
%D N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
%H Vincenzo Librandi, <a href="/A001972/b001972.txt">Table of n, a(n) for n = 0..10000</a>
%H A. Cayley, <a href="/A001971/a001971.pdf">Numerical tables supplementary to second memoir on quantics</a>, Collected Mathematical Papers. Vols. 1-13, Cambridge Univ. Press, London, 1889-1897, Vol. 2, pp. 276-281. [Annotated scanned copy]
%H INRIA Algorithms Project, <a href="http://ecs.inria.fr/services/structure?nbr=208">Encyclopedia of Combinatorial Structures 208</a>
%H Clark Kimberling and John E. Brown, <a href="http://www.cs.uwaterloo.ca/journals/JIS/VOL7/Kimberling/kimber67.html">Partial Complements and Transposable Dispersions</a>, J. Integer Seqs., Vol. 7, 2004.
%H Brian O'Sullivan and Thomas Busch, <a href="http://arxiv.org/abs/0810.0231">Spontaneous emission in ultra-cold spin-polarised anisotropic Fermi seas</a>, arXiv 0810.0231v1 [quant-ph], 2008. [Eq 8a, lambda=4]
%H Simon Plouffe, <a href="https://arxiv.org/abs/0911.4975">Approximations de séries génératrices et quelques conjectures</a>, Dissertation, Université du Québec à Montréal, 1992; arXiv:0911.4975 [math.NT], 2009.
%H Simon Plouffe, <a href="/A000051/a000051_2.pdf">1031 Generating Functions</a>, Appendix to Thesis, Montreal, 1992
%H <a href="/index/Rec#order_06">Index entries for linear recurrences with constant coefficients</a>, signature (2,-1,0,1,-2,1).
%F From _Michael Somos_, Apr 21 2000: (Start)
%F a(n) = a(n-1) + a(n-4) - a(n-5) + 1.
%F a(n) = floor((n+3)^2/8). (End)
%F a(n) = Sum_{k=0..n} floor((k+4)/4) = n + 1 + Sum_{k=0..n} floor(k/4). - _Paul Barry_, Aug 19 2003
%F a(n) = a(n-4) + n + 1. - _Paul Barry_, Jul 14 2004
%F From _Mitch Harris_, Sep 08 2008: (Start)
%F a(n) = Sum_{j=0..n+4} floor(j/4);
%F a(n-4) = (1/2)*floor(n/4)*(2*n - 2 - 4*floor(n/4)). (End)
%F A002620(n+1) = a(2*n-1)/2.
%F A000217(n+1) = a(2*n).
%F a(n)+a(n+1)+a(n+2)+a(n+3) = (n+4)*(n+5)/2. - _Amarnath Murthy_, Apr 26 2004
%F a(n) = n^2/8 + 3*n/4 + 15/16 + (-1)^n/16 + A056594(n+3)/4. - _Amarnath Murthy_, Apr 26 2004
%F a(n) = A130519(n+4). - _Franklin T. Adams-Watters_, Jul 10 2009
%F a(n) = floor((n+1)/(1-e^(-8/(n+1)))). - _Richard R. Forberg_, Aug 07 2013
%F a(n) = a(-6-n) for all n in Z. - _Michael Somos_, Mar 13 2020
%F E.g.f.: ((8 + 7*x + x^2)*cosh(x) + 2*sin(x) + (7 + 7*x + x^2)*sinh(x))/8. - _Stefano Spezia_, May 09 2023
%p A001972:=-(2-z+z**3-2*z**4+z**5)/(z+1)/(z**2+1)/(z-1)**3; # conjectured by _Simon Plouffe_ in his 1992 dissertation; gives sequence except for the initial 1
%t CoefficientList[Series[1/((1-x)^2(1-x^4)),{x,0,80}],x] (* _Harvey P. Dale_, Mar 27 2011 *)
%o (PARI) a(n)=(n+3)^2\8;
%o (Magma) [Floor((n+3)^2/8): n in [0..60]]; // _Vincenzo Librandi_, Aug 15 2011
%Y Bisections are A000217 and A007590. - _Amarnath Murthy_, Apr 26 2004
%Y Cf. A001972, A002620, A008621, A056594, A130519, A333260.
%K nonn,easy
%O 0,2
%A _N. J. A. Sloane_
%E Partially edited by _R. J. Mathar_, Jul 11 2009