login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A293902
If n = p_1^e_1 * ... * p_k^e_k, p_1, ..., p_k primes, then a(n) = Product c! where c ranges over products of all combinations of exponents e_1, ..., e_k as {e_1, e_1*e_2, e_1*e_3, e_2*e_3, e_1*e_2*e_3, ..., e_1*e_2*...*e_k}.
3
1, 1, 1, 2, 1, 1, 1, 6, 2, 1, 1, 4, 1, 1, 1, 24, 1, 4, 1, 4, 1, 1, 1, 36, 2, 1, 6, 4, 1, 1, 1, 120, 1, 1, 1, 96, 1, 1, 1, 36, 1, 1, 1, 4, 4, 1, 1, 576, 2, 4, 1, 4, 1, 36, 1, 36, 1, 1, 1, 16, 1, 1, 4, 720, 1, 1, 1, 4, 1, 1, 1, 8640, 1, 1, 4, 4, 1, 1, 1, 576, 24, 1, 1, 16, 1, 1, 1, 36, 1, 16, 1, 4, 1, 1, 1, 14400, 1, 4, 4, 96, 1, 1, 1, 36, 1
OFFSET
1,4
COMMENTS
a(1) = 1 (an empty product).
FORMULA
For n = p^k * q * ... * r (with only one of the prime factors occurring multiple times), a(n) = A000142(k)^(2^(A001221(n)-1)).
a(p^n) = A000142(n), for any prime p.
For n > 1, a(n) = A163820(n) / A293900(n).
EXAMPLE
For n = 36 = 2^2 * 3^2 the combinations of the exponents are [], [2] (as exponent of 2), [2] (as exponent of 3) and [2, 2]. Taking products of these multisets we get 1 (as an empty product), 2, 2 and 4. Thus a(36) = 1! * 2! * 2! * 4! = 1*2*2*24 = 96.
For n = 72 = 2^3 * 3^2 the combinations of the exponents are [], [2], [3] and [2, 3]. Taking products of these multisets we get 1, 2, 3 and 6. Thus a(72) = 1! * 2! * 3! * 6! = 1*2*6*720 = 8640.
MATHEMATICA
Array[Apply[Times, Map[Times @@ # &, Subsets@ FactorInteger[#][[All, -1]]]!] &, 105] (* Michael De Vlieger, Oct 23 2017 *)
PROG
(PARI)
A293902(n) = { my(exp_combos=powerset(factor(n)[, 2]), m=1); for(i=1, #exp_combos, m *= vecproduct(exp_combos[i])!); m; };
vecproduct(v) = { my(m=1); for(i=1, #v, m *= v[i]); m; };
powerset(v) = { my(siz=2^length(v), pv=vector(siz)); for(i=0, siz-1, pv[i+1] = choosebybits(v, i)); pv; };
choosebybits(v, m) = { my(s=vector(hammingweight(m)), i=j=1); while(m>0, if(m%2, s[j] = v[i]; j++); i++; m >>= 1); s; };
(Scheme) (define (A293902 n) (if (= 1 n) n (/ (A163820 n) (A293900 n))))
CROSSREFS
KEYWORD
nonn
AUTHOR
Antti Karttunen, Oct 22 2017
STATUS
approved