login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Triangle read by rows: T(n,k) = Sum_{j=0..n} binomial(n, k+j)*2^(n-k-j).
8

%I #23 Sep 08 2022 08:45:22

%S 1,3,1,9,5,1,27,19,7,1,81,65,33,9,1,243,211,131,51,11,1,729,665,473,

%T 233,73,13,1,2187,2059,1611,939,379,99,15,1,6561,6305,5281,3489,1697,

%U 577,129,17,1,19683,19171,16867,12259,6883,2851,835,163,19,1,59049,58025

%N Triangle read by rows: T(n,k) = Sum_{j=0..n} binomial(n, k+j)*2^(n-k-j).

%C T(n, 0) = A000244(n), T(n, 1) = A001047(n), T(n, 2) = A066810(n).

%C Column 0 is the row sums of A038207 starting at column 0, column 1 is the row sums of A038207 starting at column 1 etc. etc. Helpful suggestions related to Riordan arrays given by Paul Barry.

%C Riordan array ( 1/(1 - 3*x), x/(1 - 2*x) ). Matrix inverse is a signed version of A209149. - _Peter Bala_, Jul 17 2013

%C T(n,k) is the number of strings of length n over an alphabet of 3 letters that contain a given string of length k as a subsequence. - _Robert Israel_, Jan 14 2020

%H G. C. Greubel, <a href="/A112626/b112626.txt">Rows n = 0..100 of triangle, flattened</a>

%F T(n, k) = Sum_{j=0..n} binomial(n, k+j)*2^(n-k-j).

%F O.g.f. (by columns): x^k /((1-3*x)*(1-2*x)^k). - Frank Ruskey and class

%F T(n,k) = Sum_{j=k..n} binomial(n,j)*2^(n-j). - _Ross La Haye_, May 02 2006

%F Binomial transform (by columns) of A055248.

%e Triangle begins as:

%e 1;

%e 3, 1;

%e 9, 5, 1;

%e 27, 19, 7, 1;

%e 81, 65, 33, 9, 1;

%e 243, 211, 131, 51, 11, 1;

%e 729, 665, 473, 233, 73, 13, 1...

%p seq(seq( add(binomial(n,j)*2^(n-j), j=k..n), k=0..n), n=0..10); # _G. C. Greubel_, Nov 18 2019

%t Flatten[Table[Sum[Binomial[n, k+m]*2^(n-k-m), {m, 0, n}], {n, 0, 10}, {k, 0, n}]]

%o (PARI) T(n,k) = sum(j=k,n, binomial(n,j)*2^(n-j)); \\ _G. C. Greubel_, Nov 18 2019

%o (Magma) [&+[Binomial(n,j)*2^(n-j): j in [k..n]]: k in [0..n], n in [0..10]]; // _G. C. Greubel_, Nov 18 2019

%o (Sage) [[sum(binomial(n,j)*2^(n-j) for j in (0..n)) for k in (0..n)] for n in (0..10)] # _G. C. Greubel_, Nov 18 2019

%o (GAP) Flat(List([0..10], n-> List([0..n], k-> Sum([k..n], j-> Binomial(n, j)*2^(n-j)) ))); # _G. C. Greubel_, Nov 18 2019

%Y Row sums = n*3^(n-1) + 3^n = A006234(n+3) (Frank Ruskey and class).

%Y Cf. A000244, A001047, A038207, A066810.

%Y Cf. A209149 (unsigned matrix inverse).

%K nonn,tabl

%O 0,2

%A _Ross La Haye_, Dec 26 2005

%E More terms from _Ross La Haye_, Dec 31 2006