OFFSET
1,2
COMMENTS
T(n-2k-1,k) = number of n-th generation vertices in the tree of sequences with unit increase labeled by 2k+2 (cf. Zoran Sunic reference) . - Benoit Cloitre, Oct 07 2003
Number of lattice paths from (0,0) to (n,n) with steps E=(1,0) and N=(0,1) which touch but do not cross the line x-y=k+1 . - Herbert Kociemba, May 24 2004
Number of standard tableaux of shape (n+k+1, n-k-1). - Emeric Deutsch, May 30 2004
Riordan array (c(x)^3,xc(x)^2) where c(x) is the g.f. of A000108. Inverse array is A109954. - Paul Barry, Jul 06 2005
LINKS
Alois P. Heinz, Rows n = 1..141, flattened
R. K. Guy, Catwalks, Sansteps and Pascal Pyramids, J. Integer Seq., Vol. 3 (2000), #00.1.6
V. E. Hoggatt, Jr. and M. Bicknell, Catalan and related sequences arising from inverses of Pascal's triangle matrices, Fib. Quart., 14 (1976), 395-405.
A. Papoulis, A new method of inversion of the Laplace transform, Quart. Appl. Math 14 (1957), 405-414.
J. Riordan, The distribution of crossings of chords joining pairs of 2n points on a circle, Math. Comp., 29 (1975), 215-222.
Zoran Sunic, Self-Describing Sequences and the Catalan Family Tree, Electronic Journal of Combinatorics, 10 (2003) #N5.
FORMULA
Sum_{ k = 0, .., n-1} T(n, k) = binomial(2n, n-1) = A001791(n).
G.f. of column k: x^(k+1)*C^(2*k+3) where C = (1-(1-4*x)^(1/2))/(2*x) is the g.f. of Catalan numbers A000108. - Philippe Deléham, Feb 03 2004
T(n, k) = A039599(n, k+1) = A009766(n+k+1, n-k-1) = A033184(n+k+2, 2k+3) . - Philippe Deléham, May 28 2005
T(n, k)=(2k+3)binomial(2n+2, n+k+2)/(n+k+3)=C(2n+2, n+k+2)-C(2n+2, n+k+3) [offset (0, 0)]. - Paul Barry, Jul 06 2005
EXAMPLE
1;
3, 1;
9, 5, 1;
28, 20, 7, 1;
90, 75, 35, 9, 1;
297, 275, 154, 54, 11, 1;
...
MAPLE
T:= (n, k)-> (2*k+3)*binomial(2*n, n-k-1)/(n+k+2):
seq(seq(T(n, k), k=0..n-1), n=1..10); # Alois P. Heinz, Jan 19 2013
MATHEMATICA
T[n_, k_] := (2*k + 3)*Binomial[2*n, n - k - 1]/(n + k + 2);
Table[T[n, k], {n, 1, 10}, {k, 0, n - 1}] // Flatten (* Jean-François Alcover, May 21 2016 *)
CROSSREFS
KEYWORD
nonn,tabl
AUTHOR
EXTENSIONS
Edited by Philippe Deléham, May 22 2005
STATUS
approved