login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A050155
Triangle T(n,k), k>=0 and n>=1, read by rows defined by: T(n,k) = (2k+3)*binomial(2n,n-k-1)/(n+k+2).
4
1, 3, 1, 9, 5, 1, 28, 20, 7, 1, 90, 75, 35, 9, 1, 297, 275, 154, 54, 11, 1, 1001, 1001, 637, 273, 77, 13, 1, 3432, 3640, 2548, 1260, 440, 104, 15, 1, 11934, 13260, 9996, 5508, 2244, 663, 135, 17, 1, 41990, 48450, 38760, 23256, 10659, 3705, 950, 170, 19, 1
OFFSET
1,2
COMMENTS
T(n-2k-1,k) = number of n-th generation vertices in the tree of sequences with unit increase labeled by 2k+2 (cf. Zoran Sunic reference) . - Benoit Cloitre, Oct 07 2003
Number of lattice paths from (0,0) to (n,n) with steps E=(1,0) and N=(0,1) which touch but do not cross the line x-y=k+1 . - Herbert Kociemba, May 24 2004
Number of standard tableaux of shape (n+k+1, n-k-1). - Emeric Deutsch, May 30 2004
Riordan array (c(x)^3,xc(x)^2) where c(x) is the g.f. of A000108. Inverse array is A109954. - Paul Barry, Jul 06 2005
LINKS
R. K. Guy, Catwalks, Sansteps and Pascal Pyramids, J. Integer Seq., Vol. 3 (2000), #00.1.6
V. E. Hoggatt, Jr. and M. Bicknell, Catalan and related sequences arising from inverses of Pascal's triangle matrices, Fib. Quart., 14 (1976), 395-405.
A. Papoulis, A new method of inversion of the Laplace transform, Quart. Appl. Math 14 (1957), 405-414.
Zoran Sunic, Self-Describing Sequences and the Catalan Family Tree, Electronic Journal of Combinatorics, 10 (2003) #N5.
FORMULA
Sum_{ k = 0, .., n-1} T(n, k) = binomial(2n, n-1) = A001791(n).
G.f. of column k: x^(k+1)*C^(2*k+3) where C = (1-(1-4*x)^(1/2))/(2*x) is the g.f. of Catalan numbers A000108. - Philippe Deléham, Feb 03 2004
T(n, k) = A039599(n, k+1) = A009766(n+k+1, n-k-1) = A033184(n+k+2, 2k+3) . - Philippe Deléham, May 28 2005
Sum_{k>= 0} T(m, k)*T(n, k) = A000108(m+n) - A000108(m)*A000108(n). - Philippe Deléham, May 28 2005
T(n, k)=(2k+3)binomial(2n+2, n+k+2)/(n+k+3)=C(2n+2, n+k+2)-C(2n+2, n+k+3) [offset (0, 0)]. - Paul Barry, Jul 06 2005
EXAMPLE
1;
3, 1;
9, 5, 1;
28, 20, 7, 1;
90, 75, 35, 9, 1;
297, 275, 154, 54, 11, 1;
...
MAPLE
T:= (n, k)-> (2*k+3)*binomial(2*n, n-k-1)/(n+k+2):
seq(seq(T(n, k), k=0..n-1), n=1..10); # Alois P. Heinz, Jan 19 2013
MATHEMATICA
T[n_, k_] := (2*k + 3)*Binomial[2*n, n - k - 1]/(n + k + 2);
Table[T[n, k], {n, 1, 10}, {k, 0, n - 1}] // Flatten (* Jean-François Alcover, May 21 2016 *)
CROSSREFS
Cf. A000108, A001791 (row sums), A050144.
Sequence in context: A005533 A331257 A112626 * A270236 A140714 A112932
KEYWORD
nonn,tabl
EXTENSIONS
Edited by Philippe Deléham, May 22 2005
STATUS
approved