login

Reminder: The OEIS is hiring a new managing editor, and the application deadline is January 26.

A050144
T(n,k) = M(2n-1,n-1,k-1), 0 <= k <= n, n >= 0, where M(p,q,r) is the number of upright paths from (0,0) to (p,p-q) that meet the line y = x+r and do not rise above it.
10
0, 1, 0, 1, 1, 1, 2, 3, 4, 1, 5, 9, 14, 6, 1, 14, 28, 48, 27, 8, 1, 42, 90, 165, 110, 44, 10, 1, 132, 297, 572, 429, 208, 65, 12, 1, 429, 1001, 2002, 1638, 910, 350, 90, 14, 1, 1430, 3432, 7072, 6188, 3808, 1700, 544, 119, 16, 1
OFFSET
0,7
COMMENTS
Let V=(e(1),...,e(n)) consist of q 1's and p-q 0's; let V(h)=(e(1),...,e(h)) and m(h)=(#1's in V(h))-(#0's in V(h)) for h=1,...,n. Then M(p,q,r)=number of V having r=max{m(h)}.
The interpretation of T(n,k) as RU walks in terms of M(.,.,.) in the NAME is erroneous. There seems to be a pattern along subdiagonals:
M(3,1,1) = 4 = T(3,2); M(3,1,2) = 1 = T(4,4); M(5,2,1) = 20 = T(5,3); M(5,2,2) = 7 = T(6,5); M(5,2,3) = 1 = T(7,7); M(7,3,0) = 165 = T(6,2); M(7,3,1) = 110 = T(7,4); M(7,3,2) = 44 = T(8,6); M(7,3,3) = 10 = T(9,8); M(7,3,4) = 1 = T(10,10); M(9,4,0) = 1001 = T(8,3); M(9,4,1) = 637 = T(9,5); M(9,4,2) = 273 = T(10,7); M(9,4,3) = 77 = T(11,9); M(9,4,4) = 13 = T(12,11); M(9,4,5) = 1 = T(13,13); M(11,5,0) = 6188 = T(10,4); M(11,5,1) = 3808 = T(11,6); M(11,5,2) = 1700 = T(12,8); M(11,5,3) = 544 = T(13,...); M(11,5,4) = 119; M(11,5,5) = 16; M(11,5,6) = 1; M(13,6,0) = 38760 = T(12,5); M(13,6,1) = 23256 = T(13,7); M(13,6,2) = 10659 = T(14,9); - R. J. Mathar, Jul 31 2024
REFERENCES
B. A. Bondarenko, Generalized Pascal Triangles and Pyramids (in Russian), FAN, Tashkent, 1990, ISBN 5-648-00738-8. English translation published by Fibonacci Association, Santa Clara Univ., Santa Clara, CA, 1993; see p. 29.
LINKS
Emeric Deutsch and L. Shapiro, A survey of the Fine numbers, Discrete Math., 241 (2001), 241-265.
R. K. Guy, Catwalks, sandsteps and Pascal pyramids, J. Integer Sequences, Vol. 3 (2000), Article #00.1.6.
FORMULA
For n > 0: Sum_{k>=0} T(n, k) = binomial(2*n-1, n); see A001700. - Philippe Deléham, Feb 13 2004 [Erroneous sum-formula deleted. R. J. Mathar, Jul 31 2024]
T(n, k)=0 if n < k; T(0, 0)=0, T(n, 0) = A000108(n-1) for n > 0; T(n, 1) = Sum_{j>=0} T(n-1-j, 0)*A000108(j+1); T(n, 2) = Sum_{j>=0} T(n-j, 1)*A000108(j); for k > 2, T(n, k) = Sum_{j>=0} T(n-1-j, k-1)*A000108(j+1). - Philippe Deléham, Feb 13 2004 [Corrected by Sean A. Irvine, Aug 08 2021]
For the column k=0, g.f.: x*C(x); for the column k=1, g.f.: x*C(x)*(C(x)-1); for the column k, k > 1, g.f.: x*C(x)^2*(C(x)-1)^(k-1); where C(x) = Sum_{n>=0} A000108(n)*x^n is g.f. for Catalan numbers, A000108. - Philippe Deléham, Feb 13 2004
T(n,0) = A033814(n,2). T(n,1) = A033814(n+1,3), T(n,k) = A033814(n+2,k+2) for k>=2. - R. J. Mathar, Jul 31 2024
EXAMPLE
0
1 0
1 1 1
2 3 4 1
5 9 14 5 1
14 28 48 20 6 1
42 90 165 75 27 7 1
132 297 572 275 110 35 8 1
429 1001 2002 1001 429 154 44 9 1
1430 3432 7072 3640 1638 637 208 54 10 1
4862 11934 25194 13260 6188 2548 910 273 65 11 1
MAPLE
A050144 := proc(n, k)
if n < k then
0;
elif k =0 then
if n =0 then
0 ;
else
A000108(n-1) ;
end if;
elif k = 1 then
add( procname(n-1-j, 0)*A000108(j+1), j=0..n-1) ;
elif k = 2 then
add( procname(n-j, 1)*A000108(j), j=0..n) ;
else
add( procname(n-1-j, k-1)*A000108(j), j=0..n-1) ;
end if;
end proc:
seq(seq( A050144(n, k), k=0..n), n=0..12) ; # R. J. Mathar, Jul 30 2024
MATHEMATICA
c[n_] := Binomial[2 n, n]/(n + 1);
t[n_, k_] := Which[k == 0, c[n - 1],
k == 1, Sum[t[n - 1 - j, 0]*c[j + 1], {j, 0, n - 2}],
k == 2, Sum[t[n - j, 1]*c[j], {j, 0, n - 1}],
k > 2, Sum[t[n - 1 - j, k - 1] c[j + 1], {j, 0, n - 2}]]
t[0, 0] = 0;
Column[Table[t[n, k], {n, 0, 10}, {k, 0, n}]]
(* Clark Kimberling July 30 2024 *)
CROSSREFS
{M(2n, 0, k)} is given by A039599. {M(2n+1, n+1, k+1)} is given by A039598.
Cf. A033184, A050153, A000108 (column 0), A000245 (column 1), A002057 (column 2), A000344 (column 3), A003517 (column 4), A000588 (column 5), A003518 (column 6), A001392 (column 7), A003519 (column 8), A000589 (column 9), A090749 (column 10).
Sequence in context: A277884 A117386 A101174 * A124406 A225650 A340087
KEYWORD
nonn,tabl
STATUS
approved