|
|
A003518
|
|
a(n) = 8*binomial(2*n+1,n-3)/(n+5).
(Formerly M4529)
|
|
26
|
|
|
1, 8, 44, 208, 910, 3808, 15504, 62016, 245157, 961400, 3749460, 14567280, 56448210, 218349120, 843621600, 3257112960, 12570420330, 48507033744, 187187399448, 722477682080, 2789279908316, 10772391370048, 41620603020640
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
3,2
|
|
COMMENTS
|
a(n-6) is the number of n-th generation nodes in the tree of sequences with unit increase labeled by 7 (cf. Zoran Sunic reference). - Benoit Cloitre, Oct 07 2003
Number of standard tableaux of shape (n+4,n-3). - Emeric Deutsch, May 30 2004
|
|
REFERENCES
|
N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
|
|
LINKS
|
Vincenzo Librandi, Table of n, a(n) for n = 3..500
Daniel Birmajer, Juan B. Gil and Michael D. Weiner, Bounce statistics for rational lattice paths, arXiv:1707.09918 [math.CO], 2017, p. 9.
S. J. Cyvin, J. Brunvoll, E. Brendsdal, B. N. Cyvin and E. K. Lloyd, Enumeration of polyene hydrocarbons: a complete mathematical solution, J. Chem. Inf. Comput. Sci., Vol. 35, No. 4 (1995), pp. 743-751.
S. J. Cyvin, J. Brunvoll, E. Brendsdal, B. N. Cyvin and E. K. Lloyd, Enumeration of polyene hydrocarbons: a complete mathematical solution, J. Chem. Inf. Comput. Sci., Vol. 35, No. 4 (1995), pp. 743-751. [Annotated scanned copy]
Hilmar Haukur Gudmundsson, Dyck paths, standard Young tableaux, and pattern avoiding permutations, PU. M. A., Vol. 21, No.2 (2010), pp. 265-284 (see 4.5 p. 280).
Richard K. Guy, Letter to N. J. A. Sloane, May 1990.
Richard K. Guy, Catwalks, Sandsteps and Pascal Pyramids, J. Integer Seq., Vol. 3 (2000), Article 00.1.6.
V. E. Hoggatt, Jr., 7-page typed letter to N. J. A. Sloane with suggestions for new sequences, circa 1977.
V. E. Hoggatt, Jr. and M. Bicknell, Catalan and related sequences arising from inverses of Pascal's triangle matrices, Fib. Quart., Vol. 14, No. 5 (1976), pp. 395-405.
Olya Mandelshtam, Multi-Catalan tableaux and the two-species TASEP, arXiv:1502.00948 [math.CO], 2015.
Olya Mandelshtam, Multi-Catalan tableaux and the two-species TASEP, Ann. Inst. Henri Poincaré Comb. Phys. Interact., Vol. 3 (2016), pp. 321-348, DOI 10.4171/AIHPD/30.
L. W. Shapiro, A Catalan triangle, Discrete Math., Vol. 14, No. 1 (1976), pp. 83-90.
L. W. Shapiro, A Catalan triangle, Discrete Math., Vol. 14, No. 1 (1976), pp. 83-90. [Annotated scanned copy]
Zoran Sunic, Self describing sequences and the Catalan family tree, Elect. J. Combin., Vol. 10 (2003), Article N5.
Wen-Jin Woan, Lou Shapiro and D. G. Rogers, The Catalan numbers, the Lebesgue integral and 4^{n-2}, Amer. Math. Monthly, Vol. 104, No. 10 (1997), pp. 926-931.
|
|
FORMULA
|
G.f.: x^3*C(x)^8, where C(x)=(1-sqrt(1-4*x))/(2*x) is g.f. for the Catalan numbers (A000108). - Emeric Deutsch, May 30 2004
The convolution of A002057 with itself. - Gerald McGarvey, Nov 08 2007
Let A be the Toeplitz matrix of order n defined by: A[i,i-1]=-1, A[i,j]=Catalan(j-i), (i<=j), and A[i,j]=0, otherwise. Then, for n>=7, a(n-4)=(-1)^(n-7)*coeff(charpoly(A,x),x^7). - Milan Janjic, Jul 08 2010
a(n) = A214292(2*n,n-4) for n > 3. - Reinhard Zumkeller, Jul 12 2012
Integral representation as the n-th moment of the signed weight function W(x) on (0,4), i.e., in Maple notation: a(n+3) = int(x^n*W(x),x=0..4), n=0,1..., with W(x) = (1/2)*x^(7/2)*(x-2)*(x^2-4*x+2)*sqrt(4-x)/Pi. - Karol A. Penson, Oct 26 2016
From Ilya Gutkovskiy, Jan 22 2017: (Start)
E.g.f.: 4*BesselI(4,2*x)*exp(2*x)/x.
a(n) ~ 4^(n+2)/(sqrt(Pi)*n^(3/2)). (End)
D-finite with recurrence: -(n+5)*(n-3)*a(n) +2*n*(2*n+1)*a(n-1)=0. - R. J. Mathar, Feb 20 2020
From Amiram Eldar, Jan 02 2022: (Start)
Sum_{n>=3} 1/a(n) = 43*Pi/(36*sqrt(3)) - 81/80.
Sum_{n>=3} (-1)^(n+1)/a(n) = 6213*log(phi)/(50*sqrt(5)) - 10339/400, where phi is the golden ratio (A001622). (End)
|
|
EXAMPLE
|
G.f. = x^3 + 8*x^4 + 44*x^5 + 208*x^6 + 910*x^7 + 3808*x^8 + 15504*x^9 + ...
|
|
MATHEMATICA
|
Table[8 Binomial[2 n + 1, n - 3]/(n + 5), {n, 3, 25}] (* Michael De Vlieger, Oct 26 2016 *)
CoefficientList[Series[((1 - Sqrt[1 - 4 x])/(2 x))^8, {x, 0, 30}], x] (* Vincenzo Librandi, Jan 23 2017 *)
|
|
PROG
|
(PARI) {a(n) = if( n<3, 0, 8 * binomial(2*n + 1, n-3) / (n + 5))}; /* Michael Somos, Mar 14 2011 */
(PARI) x='x+O('x^50); Vec(x^3*((1-(1-4*x)^(1/2))/(2*x))^8) \\ Altug Alkan, Nov 01 2015
(Magma) [8*Binomial(2*n+1, n-3)/(n+5): n in [3..30]]; // Vincenzo Librandi, Jan 23 2017
|
|
CROSSREFS
|
Cf. A002057.
First differences are in A026018.
A diagonal of any of the essentially equivalent arrays A009766, A030237, A033184, A059365, A099039, A106566, A130020, A047072.
Cf. A000108, A000245, A000344, A000588, A001392, A002057, A003517, A003519, A001622.
Sequence in context: A270627 A273639 A022636 * A100575 A272112 A271005
Adjacent sequences: A003515 A003516 A003517 * A003519 A003520 A003521
|
|
KEYWORD
|
nonn,easy
|
|
AUTHOR
|
N. J. A. Sloane
|
|
EXTENSIONS
|
More terms from Jon E. Schoenfield, May 06 2010
|
|
STATUS
|
approved
|
|
|
|