The OEIS mourns the passing of Jim Simons and is grateful to the Simons Foundation for its support of research in many branches of science, including the OEIS.
login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A003518 a(n) = 8*binomial(2*n+1,n-3)/(n+5).
(Formerly M4529)
26
1, 8, 44, 208, 910, 3808, 15504, 62016, 245157, 961400, 3749460, 14567280, 56448210, 218349120, 843621600, 3257112960, 12570420330, 48507033744, 187187399448, 722477682080, 2789279908316, 10772391370048, 41620603020640 (list; graph; refs; listen; history; text; internal format)
OFFSET
3,2
COMMENTS
a(n-6) is the number of n-th generation nodes in the tree of sequences with unit increase labeled by 7 (cf. Zoran Sunic reference). - Benoit Cloitre, Oct 07 2003
Number of standard tableaux of shape (n+4,n-3). - Emeric Deutsch, May 30 2004
REFERENCES
N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
LINKS
Daniel Birmajer, Juan B. Gil and Michael D. Weiner, Bounce statistics for rational lattice paths, arXiv:1707.09918 [math.CO], 2017, p. 9.
S. J. Cyvin, J. Brunvoll, E. Brendsdal, B. N. Cyvin and E. K. Lloyd, Enumeration of polyene hydrocarbons: a complete mathematical solution, J. Chem. Inf. Comput. Sci., Vol. 35, No. 4 (1995), pp. 743-751.
S. J. Cyvin, J. Brunvoll, E. Brendsdal, B. N. Cyvin and E. K. Lloyd, Enumeration of polyene hydrocarbons: a complete mathematical solution, J. Chem. Inf. Comput. Sci., Vol. 35, No. 4 (1995), pp. 743-751. [Annotated scanned copy]
Hilmar Haukur Gudmundsson, Dyck paths, standard Young tableaux, and pattern avoiding permutations, PU. M. A., Vol. 21, No.2 (2010), pp. 265-284; arXiv:0912.4747 [math.CO], 2009 (see Theorem 11 in Section 4.5).
Richard K. Guy, Catwalks, Sandsteps and Pascal Pyramids, J. Integer Seq., Vol. 3 (2000), Article 00.1.6.
V. E. Hoggatt, Jr. and M. Bicknell, Catalan and related sequences arising from inverses of Pascal's triangle matrices, Fib. Quart., Vol. 14, No. 5 (1976), pp. 395-405.
Olya Mandelshtam, Multi-Catalan tableaux and the two-species TASEP, arXiv:1502.00948 [math.CO], 2015.
Olya Mandelshtam, Multi-Catalan tableaux and the two-species TASEP, Ann. Inst. Henri Poincaré Comb. Phys. Interact., Vol. 3 (2016), pp. 321-348, DOI 10.4171/AIHPD/30.
L. W. Shapiro, A Catalan triangle, Discrete Math., Vol. 14, No. 1 (1976), pp. 83-90.
L. W. Shapiro, A Catalan triangle, Discrete Math., Vol. 14, No. 1 (1976), pp. 83-90. [Annotated scanned copy]
Zoran Sunic, Self describing sequences and the Catalan family tree, Elect. J. Combin., Vol. 10 (2003), Article N5.
Wen-Jin Woan, Lou Shapiro and D. G. Rogers, The Catalan numbers, the Lebesgue integral and 4^{n-2}, Amer. Math. Monthly, Vol. 104, No. 10 (1997), pp. 926-931.
FORMULA
G.f.: x^3*C(x)^8, where C(x)=(1-sqrt(1-4*x))/(2*x) is g.f. for the Catalan numbers (A000108). - Emeric Deutsch, May 30 2004
The convolution of A002057 with itself. - Gerald McGarvey, Nov 08 2007
Let A be the Toeplitz matrix of order n defined by: A[i,i-1]=-1, A[i,j]=Catalan(j-i), (i<=j), and A[i,j]=0, otherwise. Then, for n>=7, a(n-4)=(-1)^(n-7)*coeff(charpoly(A,x),x^7). - Milan Janjic, Jul 08 2010
a(n) = A214292(2*n,n-4) for n > 3. - Reinhard Zumkeller, Jul 12 2012
Integral representation as the n-th moment of the signed weight function W(x) on (0,4), i.e., in Maple notation: a(n+3) = int(x^n*W(x),x=0..4), n=0,1..., with W(x) = (1/2)*x^(7/2)*(x-2)*(x^2-4*x+2)*sqrt(4-x)/Pi. - Karol A. Penson, Oct 26 2016
From Ilya Gutkovskiy, Jan 22 2017: (Start)
E.g.f.: 4*BesselI(4,2*x)*exp(2*x)/x.
a(n) ~ 4^(n+2)/(sqrt(Pi)*n^(3/2)). (End)
D-finite with recurrence: -(n+5)*(n-3)*a(n) +2*n*(2*n+1)*a(n-1)=0. - R. J. Mathar, Feb 20 2020
From Amiram Eldar, Jan 02 2022: (Start)
Sum_{n>=3} 1/a(n) = 43*Pi/(36*sqrt(3)) - 81/80.
Sum_{n>=3} (-1)^(n+1)/a(n) = 6213*log(phi)/(50*sqrt(5)) - 10339/400, where phi is the golden ratio (A001622). (End)
EXAMPLE
G.f. = x^3 + 8*x^4 + 44*x^5 + 208*x^6 + 910*x^7 + 3808*x^8 + 15504*x^9 + ...
MATHEMATICA
Table[8 Binomial[2 n + 1, n - 3]/(n + 5), {n, 3, 25}] (* Michael De Vlieger, Oct 26 2016 *)
CoefficientList[Series[((1 - Sqrt[1 - 4 x])/(2 x))^8, {x, 0, 30}], x] (* Vincenzo Librandi, Jan 23 2017 *)
PROG
(PARI) {a(n) = if( n<3, 0, 8 * binomial(2*n + 1, n-3) / (n + 5))}; /* Michael Somos, Mar 14 2011 */
(PARI) x='x+O('x^50); Vec(x^3*((1-(1-4*x)^(1/2))/(2*x))^8) \\ Altug Alkan, Nov 01 2015
(Magma) [8*Binomial(2*n+1, n-3)/(n+5): n in [3..30]]; // Vincenzo Librandi, Jan 23 2017
CROSSREFS
Cf. A002057.
First differences are in A026018.
A diagonal of any of the essentially equivalent arrays A009766, A030237, A033184, A059365, A099039, A106566, A130020, A047072.
Sequence in context: A273639 A370568 A022636 * A100575 A272112 A271005
KEYWORD
nonn,easy
AUTHOR
EXTENSIONS
More terms from Jon E. Schoenfield, May 06 2010
STATUS
approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified June 19 05:57 EDT 2024. Contains 373492 sequences. (Running on oeis4.)