login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A003518 a(n) = 8*binomial(2*n+1,n-3)/(n+5).
(Formerly M4529)
26
1, 8, 44, 208, 910, 3808, 15504, 62016, 245157, 961400, 3749460, 14567280, 56448210, 218349120, 843621600, 3257112960, 12570420330, 48507033744, 187187399448, 722477682080, 2789279908316, 10772391370048, 41620603020640 (list; graph; refs; listen; history; text; internal format)
OFFSET

3,2

COMMENTS

a(n-6) is the number of n-th generation nodes in the tree of sequences with unit increase labeled by 7 (cf. Zoran Sunic reference). - Benoit Cloitre, Oct 07 2003

Number of standard tableaux of shape (n+4,n-3). - Emeric Deutsch, May 30 2004

REFERENCES

N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

LINKS

Vincenzo Librandi, Table of n, a(n) for n = 3..500

Daniel Birmajer, Juan B. Gil and Michael D. Weiner, Bounce statistics for rational lattice paths, arXiv:1707.09918 [math.CO], 2017, p. 9.

S. J. Cyvin, J. Brunvoll, E. Brendsdal, B. N. Cyvin and E. K. Lloyd, Enumeration of polyene hydrocarbons: a complete mathematical solution, J. Chem. Inf. Comput. Sci., Vol. 35, No. 4 (1995), pp. 743-751.

S. J. Cyvin, J. Brunvoll, E. Brendsdal, B. N. Cyvin and E. K. Lloyd, Enumeration of polyene hydrocarbons: a complete mathematical solution, J. Chem. Inf. Comput. Sci., Vol. 35, No. 4 (1995), pp. 743-751. [Annotated scanned copy]

Hilmar Haukur Gudmundsson, Dyck paths, standard Young tableaux, and pattern avoiding permutations, PU. M. A., Vol. 21, No.2 (2010), pp. 265-284 (see 4.5 p. 280).

Richard K. Guy, Letter to N. J. A. Sloane, May 1990.

Richard K. Guy, Catwalks, Sandsteps and Pascal Pyramids, J. Integer Seq., Vol. 3 (2000), Article 00.1.6.

V. E. Hoggatt, Jr., 7-page typed letter to N. J. A. Sloane with suggestions for new sequences, circa 1977.

V. E. Hoggatt, Jr. and M. Bicknell, Catalan and related sequences arising from inverses of Pascal's triangle matrices, Fib. Quart., Vol. 14, No. 5 (1976), pp. 395-405.

Olya Mandelshtam, Multi-Catalan tableaux and the two-species TASEP, arXiv:1502.00948 [math.CO], 2015.

Olya Mandelshtam, Multi-Catalan tableaux and the two-species TASEP, Ann. Inst. Henri Poincaré Comb. Phys. Interact., Vol. 3 (2016), pp. 321-348, DOI 10.4171/AIHPD/30.

L. W. Shapiro, A Catalan triangle, Discrete Math., Vol. 14, No. 1 (1976), pp. 83-90.

L. W. Shapiro, A Catalan triangle, Discrete Math., Vol. 14, No. 1 (1976), pp. 83-90. [Annotated scanned copy]

Zoran Sunic, Self describing sequences and the Catalan family tree, Elect. J. Combin., Vol. 10 (2003), Article N5.

Wen-Jin Woan, Lou Shapiro and D. G. Rogers, The Catalan numbers, the Lebesgue integral and 4^{n-2}, Amer. Math. Monthly, Vol. 104, No. 10 (1997), pp. 926-931.

FORMULA

G.f.: x^3*C(x)^8, where C(x)=(1-sqrt(1-4*x))/(2*x) is g.f. for the Catalan numbers (A000108). - Emeric Deutsch, May 30 2004

The convolution of A002057 with itself. - Gerald McGarvey, Nov 08 2007

Let A be the Toeplitz matrix of order n defined by: A[i,i-1]=-1, A[i,j]=Catalan(j-i), (i<=j), and A[i,j]=0, otherwise. Then, for n>=7, a(n-4)=(-1)^(n-7)*coeff(charpoly(A,x),x^7). - Milan Janjic, Jul 08 2010

a(n) = A214292(2*n,n-4) for n > 3. - Reinhard Zumkeller, Jul 12 2012

Integral representation as the n-th moment of the signed weight function W(x) on (0,4), i.e., in Maple notation: a(n+3) = int(x^n*W(x),x=0..4), n=0,1..., with W(x) = (1/2)*x^(7/2)*(x-2)*(x^2-4*x+2)*sqrt(4-x)/Pi. - Karol A. Penson, Oct 26 2016

From Ilya Gutkovskiy, Jan 22 2017: (Start)

E.g.f.: 4*BesselI(4,2*x)*exp(2*x)/x.

a(n) ~ 4^(n+2)/(sqrt(Pi)*n^(3/2)). (End)

D-finite with recurrence: -(n+5)*(n-3)*a(n) +2*n*(2*n+1)*a(n-1)=0. - R. J. Mathar, Feb 20 2020

From Amiram Eldar, Jan 02 2022: (Start)

Sum_{n>=3} 1/a(n) = 43*Pi/(36*sqrt(3)) - 81/80.

Sum_{n>=3} (-1)^(n+1)/a(n) = 6213*log(phi)/(50*sqrt(5)) - 10339/400, where phi is the golden ratio (A001622). (End)

EXAMPLE

G.f. = x^3 + 8*x^4 + 44*x^5 + 208*x^6 + 910*x^7 + 3808*x^8 + 15504*x^9 + ...

MATHEMATICA

Table[8 Binomial[2 n + 1, n - 3]/(n + 5), {n, 3, 25}] (* Michael De Vlieger, Oct 26 2016 *)

CoefficientList[Series[((1 - Sqrt[1 - 4 x])/(2 x))^8, {x, 0, 30}], x] (* Vincenzo Librandi, Jan 23 2017 *)

PROG

(PARI) {a(n) = if( n<3, 0, 8 * binomial(2*n + 1, n-3) / (n + 5))}; /* Michael Somos, Mar 14 2011 */

(PARI) x='x+O('x^50); Vec(x^3*((1-(1-4*x)^(1/2))/(2*x))^8) \\ Altug Alkan, Nov 01 2015

(Magma) [8*Binomial(2*n+1, n-3)/(n+5): n in [3..30]]; // Vincenzo Librandi, Jan 23 2017

CROSSREFS

Cf. A002057.

First differences are in A026018.

A diagonal of any of the essentially equivalent arrays A009766, A030237, A033184, A059365, A099039, A106566, A130020, A047072.

Cf. A000108, A000245, A000344, A000588, A001392, A002057, A003517, A003519, A001622.

Sequence in context: A270627 A273639 A022636 * A100575 A272112 A271005

Adjacent sequences: A003515 A003516 A003517 * A003519 A003520 A003521

KEYWORD

nonn,easy

AUTHOR

N. J. A. Sloane

EXTENSIONS

More terms from Jon E. Schoenfield, May 06 2010

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified March 31 05:57 EDT 2023. Contains 361634 sequences. (Running on oeis4.)