login
A225650
The greatest common divisor of Landau g(n) and n.
6
1, 1, 2, 3, 4, 1, 6, 1, 1, 1, 10, 1, 12, 1, 14, 15, 4, 1, 6, 1, 20, 21, 2, 1, 24, 5, 2, 1, 14, 1, 30, 1, 4, 3, 2, 35, 36, 1, 2, 39, 40, 1, 42, 1, 44, 15, 2, 1, 24, 7, 10, 3, 52, 1, 18, 55, 56, 3, 2, 1, 60, 1, 2, 21, 8, 65, 66, 1, 4, 3, 70, 1, 72, 1, 2, 15, 76, 77, 78, 1
OFFSET
0,3
LINKS
FORMULA
a(n) = gcd(n, A000793(n)).
MATHEMATICA
b[n_, i_] := b[n, i] = Module[{p}, p = If[i < 1, 1, Prime[i]]; If[n == 0 || i < 1, 1, Max[b[n, i - 1], Table[p^j*b[n - p^j, i - 1], {j, 1, Log[p, n] // Floor}]]]]; g[n_] := b[n, If[n < 8, 3, PrimePi[Ceiling[1.328*Sqrt[n* Log[n] // Floor]]]]]; a[n_] := GCD[n, g[n]]; Table[a[n], {n, 0, 100}] (* Jean-François Alcover, Mar 02 2016, after Alois P. Heinz *)
PROG
(Scheme): (define (A225650 n) (gcd (A000793 n) n))
;; Scheme-code for A000793 can be found in the Program section of that entry.
CROSSREFS
A225648 gives the position of ones, and likewise A225651 gives the positions of fixed points, that is, a(A225651(n)) = A225651(n) for all n.
Sequence in context: A101174 A050144 A124406 * A340087 A239223 A143771
KEYWORD
nonn
AUTHOR
Antti Karttunen, May 11 2013
STATUS
approved