login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A239223
Number T(n,k) of partitions of n with standard deviation σ in the half-open interval [k,k+1); triangle T(n,k), n>=1, 0<=k<=max(0,floor(n/2)-1), read by rows.
3
1, 2, 3, 4, 1, 6, 1, 8, 2, 1, 10, 4, 1, 12, 7, 2, 1, 15, 10, 4, 1, 19, 14, 6, 2, 1, 23, 21, 7, 4, 1, 25, 32, 14, 3, 2, 1, 33, 39, 19, 6, 3, 1, 41, 51, 27, 10, 3, 2, 1, 44, 70, 39, 13, 7, 2, 1, 51, 92, 52, 21, 9, 3, 2, 1, 58, 121, 69, 30, 10, 6, 2, 1, 67, 149
OFFSET
1,2
LINKS
EXAMPLE
Triangle T(n,k) begins:
1;
2;
3;
4, 1;
6, 1;
8, 2, 1;
10, 4, 1;
12, 7, 2, 1;
15, 10, 4, 1;
19, 14, 6, 2, 1;
23, 21, 7, 4, 1;
25, 32, 14, 3, 2, 1;
MAPLE
b:= proc(n, i, m, s, c) `if`(n=0, x^floor(sqrt(s/c-(m/c)^2)),
`if`(i=1, b(0$2, m+n, s+n, c+n), add(b(n-i*j, i-1,
m+i*j, s+i^2*j, c+j), j=0..n/i)))
end:
T:= n->(p->seq(coeff(p, x, i), i=0..degree(p)))(b(n$2, 0$3)):
seq(T(n), n=1..18);
MATHEMATICA
b[n_, i_, m_, s_, c_] := b[n, i, m, s, c] = If[n==0, x^Floor[Sqrt[s/c - (m/c)^2]], If[i==1, b[0, 0, m+n, s+n, c+n], Sum[b[n-i*j, i-1, m+i*j, s + i^2*j, c+j], {j, 0, n/i}]]]; T[n_] := Function[p, Table[Coefficient[p, x, i], {i, 0, Exponent[p, x]}]][b[n, n, 0, 0, 0]]; Table[T[n], {n, 1, 18}] // Flatten (* Jean-François Alcover, Nov 17 2015, translated from Maple *)
CROSSREFS
Column k=0 gives A238616.
Row sums give A000041.
Maximal index in row n is A140106(n).
Cf. A239228.
Sequence in context: A124406 A225650 A340087 * A143771 A364255 A366283
KEYWORD
nonn,tabf
AUTHOR
Alois P. Heinz, Mar 12 2014
STATUS
approved