

A112932


Denominator of rational values arising in an asymptotic formula for 1/(zeta(s)1) as s>infinity.


2



1, 3, 1, 9, 5, 3, 27, 7, 15, 9, 5, 81, 21, 11, 45, 25, 13, 27, 7, 15, 243, 63, 33, 135, 17, 35, 9, 75, 19, 39, 81, 21, 11, 45, 729, 23, 189, 49, 99, 25, 405, 51, 13, 105, 27, 55, 225, 57, 29, 117, 15, 243, 31, 125, 63, 65, 33, 135
(list;
graph;
refs;
listen;
history;
text;
internal format)



OFFSET

0,2


LINKS



EXAMPLE

1/(zeta(s)1)=2^s(4/3)^s1+(8/9)^s(4/5)^s+(2/3)^s(16/27)^s(4/7)^s+2*(8/15)^s2*(4/9)^s+(2/5)^s+(32/81)^s+2*(8/21)^s(4/11)^s3*(16/45)^s+o((16/45)^x) and here sequence consists of denominators of 2/1,4/3,1/1,8/9,4/5,...


MATHEMATICA

nmax = 20; lz = ConstantArray[0, nmax]; ax = 0; Do[le = Exp[Limit[Log[Abs[(1/(Zeta[x]  1)  ax)]]/x, x > Infinity]]; ls = Limit[(1/(Zeta[x]  1)  ax)/le^x, x > Infinity]; ax = ax + ls*le^x; lz[[j]] = le; , {j, 1, nmax}]; Denominator[lz] (* Vaclav Kotesovec, Aug 11 2019 *)


CROSSREFS



KEYWORD

frac,more,nonn


AUTHOR



EXTENSIONS



STATUS

approved



