login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A112933
Constant terms arising in an asymptotic formula for 1/(zeta(s)-1) as s --> infinity.
2
1, -1, -1, 1, -1, 1, -1, -1, 2, -2, 1, 1, 2, -1, -3, 1, -1, 3, 1, -3, -1, -3, 2, 4, -1, 2, 1, -3, -1, 2, -4, -3, 1, 7, 1, -1, 4, 1, -3, -2, -5, 2, 1, -6, -3, 2, 6, 2, -1, -3, 1, 5, -1, -1, 7, 2, -3, -13
OFFSET
0,9
EXAMPLE
1/(zeta(s)-1)=2^s-(4/3)^s-1+(8/9)^s-(4/5)^s+(2/3)^s-(16/27)^s-(4/7)^s+2*(8/15)^s-2*(4/9)^s+(2/5)^s+(32/81)^s+2*(8/21)^s-(4/11)^s-3*(16/45)^s+o((16/45)^x) and here sequence gives constant terms before rational powers :1,-1,-1,1,-1,1,-1,-1,2,-2,1,1,2,-1,-3,...
MATHEMATICA
nmax = 20; lz = ConstantArray[0, nmax]; lc = ConstantArray[0, nmax]; ax = 0; Do[le = Exp[Limit[Log[Abs[(1/(Zeta[x] - 1) - ax)]]/x, x -> Infinity]]; ls = Limit[(1/(Zeta[x] - 1) - ax)/le^x, x -> Infinity]; ax = ax + ls*le^x; lz[[j]] = le; lc[[j]] = ls; , {j, 1, nmax}]; lc (* Vaclav Kotesovec, Aug 11 2019 *)
CROSSREFS
Sequence in context: A130633 A266499 A226621 * A270650 A088427 A255350
KEYWORD
more,sign
AUTHOR
Benoit Cloitre, Oct 06 2005
EXTENSIONS
a(15)-a(33) computed by Andrei Vieru, added by Vaclav Kotesovec, Aug 11 2019
Terms a(34) and beyond from Vaclav Kotesovec, Aug 11 2019
STATUS
approved