OFFSET
0,7
COMMENTS
Conjecture: (i) a(n) > 0 for all n. In other words, any nonnegative integer can be expressed as the sum of two hexagonal numbers and two second hexagonal numbers.
(ii) Each nonnegative integer can be written as the sum of two pentagonal numbers and two second pentagonal numbers.
We have verified parts (i) and (ii) of the conjecture for n up to 10^7 and 10^6 respectively.
LINKS
Zhi-Wei Sun, Table of n, a(n) for n = 0..10000
Zhi-Wei Sun, On universal sums of polygonal numbers, arXiv:0905.0635 [math.NT], 2009-2015.
Zhi-Wei Sun, On universal sums a*x^2+b*y^2+f(z), a*T_x+b*T_y+f(z) and a*T_x+b*y^2+f(z), arXiv:1502.03056 [math.NT], 2015.
EXAMPLE
a(23) = 1 since 23 = 1*(2*1-1) + 1*(2*1-1) + 0*(2*0+1) + 3*(2*3+1).
a(68) = 1 since 68 = 1*(2*1-1) + 4*(2*4-1) + 1*(2*1+1) + 4*(2*4+1).
MATHEMATICA
HQ[n_]:=IntegerQ[Sqrt[8n+1]]&&Mod[Sqrt[8n+1], 4]==1
Do[r=0; Do[If[HQ[n-x(2x-1)-y(2y-1)-z(2z+1)], r=r+1], {x, 0, (Sqrt[4n+1]+1)/4}, {y, x, (Sqrt[8(n-x(2x-1))+1]+1)/4}, {z, 0, (Sqrt[4(n-x(2x-1)-y(2y-1))+1]-1)/4}];
Print[n, " ", r]; Continue, {n, 0, 10000}]
CROSSREFS
KEYWORD
nonn
AUTHOR
Zhi-Wei Sun, Feb 21 2015
STATUS
approved