login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A255353
Denominators in an expansion of 3 - sqrt(5) as a sum of fractions +-1/d.
1
2, 3, 6, 15, 24, 40, 104, 168, 273, 714, 1155, 1870, 4895, 7920, 12816, 33552, 54288, 87841, 229970, 372099, 602070, 1576239, 2550408, 4126648, 10803704, 17480760, 28284465, 74049690, 119814915, 193864606, 507544127, 821223648, 1328767776
OFFSET
1,1
COMMENTS
The minus sign in front of a fraction is considered the sign of the numerator and hence the sign of the fraction does not appear in this sequence. We note that numerators are in A131561.
LINKS
Mohammad K. Azarian, The Value of a Series of Reciprocal Fibonacci Numbers, Problem B-1133, Fibonacci Quarterly, Vol. 51, No. 3, August 2013, p. 275; Solution published in Vol. 52, No. 3, August 2014, pp. 277-278.
FORMULA
3 - sqrt(5) = Sum_{n>=1} 1/(F(2*n)*F(2*n+1)) + 1/(F(2*n)*F(2*n+2)) - 1/(F(2*n+1)*F(2*n+2)), where F = A000045 (Fibonacci numbers).
From Colin Barker, Dec 17 2015: (Start)
a(n) = 8*a(n-3) - 8*a(n-6) + a(n-9) for n>9.
G.f.: x*(2+3*x+6*x^2-x^3-8*x^5+x^8) / ((1-x)*(1+x+x^2)*(1-7*x^3+x^6)).
(End)
EXAMPLE
1/(1*2) + 1/(1*3) - 1/(2*3) + 1/(3*5) + 1/(3*8) - 1/(5*8) + 1/(8*13) + 1/(8*21) - 1/(13*21) + 1/(21*34) + 1/(21*55) - 1/(34*55) + ... + = 3 - sqrt(5).
MATHEMATICA
Table[SeriesCoefficient[x (2 + 3 x + 6 x^2 - x^3 - 8 x^5 + x^8)/((1 - x) (1 + x + x^2) (1 - 7 x^3 + x^6)), {x, 0, n}], {n, 33}] (* Michael De Vlieger, Dec 17 2015 *)
PROG
(PARI) Vec(x*(2+3*x+6*x^2-x^3-8*x^5+x^8)/((1-x)*(1+x+x^2)*(1-7*x^3+x^6)) + O(x^40)) \\ Colin Barker, Dec 17 2015
CROSSREFS
Sequence in context: A066653 A081945 A329745 * A248652 A158027 A346776
KEYWORD
nonn,frac,easy
AUTHOR
Mohammad K. Azarian, Feb 21 2015
STATUS
approved