login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Denominators in an expansion of 3 - sqrt(5) as a sum of fractions +-1/d.
1

%I #35 Dec 18 2015 00:41:35

%S 2,3,6,15,24,40,104,168,273,714,1155,1870,4895,7920,12816,33552,54288,

%T 87841,229970,372099,602070,1576239,2550408,4126648,10803704,17480760,

%U 28284465,74049690,119814915,193864606,507544127,821223648,1328767776

%N Denominators in an expansion of 3 - sqrt(5) as a sum of fractions +-1/d.

%C The minus sign in front of a fraction is considered the sign of the numerator and hence the sign of the fraction does not appear in this sequence. We note that numerators are in A131561.

%H Colin Barker, <a href="/A255353/b255353.txt">Table of n, a(n) for n = 1..1000</a>

%H Mohammad K. Azarian, <a href="http://www.fq.math.ca/Problems/ElemProbAugust2013.pdf">The Value of a Series of Reciprocal Fibonacci Numbers, Problem B-1133</a>, Fibonacci Quarterly, Vol. 51, No. 3, August 2013, p. 275; <a href="http://www.fq.math.ca/Problems/ElemProbSolnAug14.pdf">Solution</a> published in Vol. 52, No. 3, August 2014, pp. 277-278.

%H <a href="/index/Rec#order_09">Index entries for linear recurrences with constant coefficients</a>, signature (0,0,8,0,0,-8,0,0,1).

%F 3 - sqrt(5) = Sum_{n>=1} 1/(F(2*n)*F(2*n+1)) + 1/(F(2*n)*F(2*n+2)) - 1/(F(2*n+1)*F(2*n+2)), where F = A000045 (Fibonacci numbers).

%F From _Colin Barker_, Dec 17 2015: (Start)

%F a(n) = 8*a(n-3) - 8*a(n-6) + a(n-9) for n>9.

%F G.f.: x*(2+3*x+6*x^2-x^3-8*x^5+x^8) / ((1-x)*(1+x+x^2)*(1-7*x^3+x^6)).

%F (End)

%e 1/(1*2) + 1/(1*3) - 1/(2*3) + 1/(3*5) + 1/(3*8) - 1/(5*8) + 1/(8*13) + 1/(8*21) - 1/(13*21) + 1/(21*34) + 1/(21*55) - 1/(34*55) + ... + = 3 - sqrt(5).

%t Table[SeriesCoefficient[x (2 + 3 x + 6 x^2 - x^3 - 8 x^5 + x^8)/((1 - x) (1 + x + x^2) (1 - 7 x^3 + x^6)), {x, 0, n}], {n, 33}] (* _Michael De Vlieger_, Dec 17 2015 *)

%o (PARI) Vec(x*(2+3*x+6*x^2-x^3-8*x^5+x^8)/((1-x)*(1+x+x^2)*(1-7*x^3+x^6)) + O(x^40)) \\ _Colin Barker_, Dec 17 2015

%Y Cf. A131561, A187799.

%K nonn,frac,easy

%O 1,1

%A _Mohammad K. Azarian_, Feb 21 2015