login
The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A112935 Logarithmic derivative of A112934 such that a(n)=(1/2)*A112934(n+1) for n>0, where A112934 equals the INVERT transform of double factorials A001147. 9
1, 3, 13, 79, 641, 6579, 81677, 1187039, 19728193, 368562723, 7639512013, 173893382575, 4310656806977, 115569893763411, 3331588687405133, 102751933334045375, 3375782951798785921, 117693183724386637635 (list; graph; refs; listen; history; text; internal format)
OFFSET

1,2

LINKS

Table of n, a(n) for n=1..18.

FORMULA

G.f.: log(1 + x + 2*x*[Sum_{n>=1} a(n)*x^n]) = Sum_{k>=1} a(n)/n*x^n.

G.f.: (1 - 1/Q(0))/x where Q(k) = 1 - x*(2*k-1)/(1 - x*(2*k+4)/Q(k+1) ); (continued fraction). - Sergei N. Gladkovskii, Mar 19 2013

G.f.: 1/(x*G(0)) - 1/(2*x), where G(k)= 1 + 1/(1 - 2*x*(2*k+2)/(2*x*(2*k+2) - 1 + 2*x*(2*k+1)/G(k+1))); (continued fraction). - Sergei N. Gladkovskii, May 31 2013

EXAMPLE

log(1+x + 2*x*[x + 3*x^2 + 13*x^3 + 79*x^4 + 641*x^5 +...])

= x + 3/2*x^2 + 13/3*x^3 + 79/4*x^4 + 641/5*x^5 +...

PROG

(PARI) {a(n)=local(F=1+x+x*O(x^n)); for(i=1, n, F=1+x+2*x^2*deriv(F)/F); return(n*polcoeff(log(F), n, x))}

CROSSREFS

Cf. A001147, A112934; A112936, A112937, A112938, A112939, A112940, A112941, A112942, A112943.

Sequence in context: A125659 A010844 A090364 * A258377 A335636 A201795

Adjacent sequences:  A112932 A112933 A112934 * A112936 A112937 A112938

KEYWORD

nonn

AUTHOR

Paul D. Hanna, Oct 09 2005

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified May 5 19:23 EDT 2021. Contains 343573 sequences. (Running on oeis4.)