login
A335636
Expansion of e.g.f. Product_{k>0} 1/(1 - tan(x)^k / k).
4
1, 1, 3, 13, 80, 560, 4972, 48060, 552632, 6813560, 95846728, 1435488184, 23855755040, 419889384096, 8048166402304, 162616435301824, 3531256457687168, 80497793591765120, 1953028123616286592, 49561115477458450560, 1328614915154244276224, 37134707962379971432448
OFFSET
0,3
LINKS
FORMULA
E.g.f.: exp( Sum_{i>0} Sum_{j>0} tan(x)^(i*j)/(i*j^i) ).
Conjecture: a(n) ~ A080130 * n * 2^(2*n+2) * n! / Pi^(n+2). - Vaclav Kotesovec, Oct 04 2020
MATHEMATICA
max = 21; Range[0, max]! * CoefficientList[Series[Product[1/(1 - Tan[x]^k/k), {k, 1, max}], {x, 0, max}], x] (* Amiram Eldar, Oct 03 2020 *)
PROG
(PARI) N=40; x='x+O('x^N); Vec(serlaplace(1/prod(k=1, N, 1-tan(x)^k/k)))
(PARI) N=40; x='x+O('x^N); Vec(serlaplace(exp(sum(i=1, N, sum(j=1, N\i, tan(x)^(i*j)/(i*j^i))))))
CROSSREFS
KEYWORD
nonn
AUTHOR
Seiichi Manyama, Oct 03 2020
STATUS
approved