The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A201795 E.g.f. satisfies: A(x)+1/2*A(x)^2 = x*exp(A(x)). 0
 1, 1, 3, 13, 80, 621, 5887, 65689, 844587, 12289825, 199702646, 3584177829, 70418168977, 1503204079573, 34644744039375, 857391850897201, 22677415997829788, 638386960029846921, 19057447729907765407, 601346850250707128125 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,3 LINKS FORMULA a(n) = n!*T(n,1), T(n,m) = sum(k=1..n-m, T(n-m,k)*m^k/k!-binomial(m,k)/2^k*T(n,k+m))), n>m, with T(n,n)=1. a(n) = ((n-1)!*sum(k=1..n-1, C(n+k-1,n-1)*sum(j=1..k, (-1)^(j)*C(k,j) *sum(i=0..n-1, ((-1)^i*j^i*C(j,n-i-1)*2^(-n+i+1))/i!)))), n>1, a(n)=1. - Vladimir Kruchinin, Feb 24 2012 a(n) ~ 2^(-1/4) * exp((sqrt(2)-1)*n) * (sqrt(2)-1)^(n-1/2) * n^(n-1). - Vaclav Kotesovec, Aug 04 2014 MATHEMATICA Rest[CoefficientList[InverseSeries[Series[(x*(2 + x))/(2*E^x), {x, 0, 20}], x], x] * Range[0, 20]!] (* Vaclav Kotesovec, Aug 04 2014 *) PROG (Maxima) array(B, 100, 100); fillarray (B, makelist (-1, i, 1, 1000)); T(n, m):=if B[n, m]=-1 then BB[n, m]:(if n=m then 1 else sum(T(n-m, k)*m^k/k!-binomial(m, k)/2^k*T(n, k+m), k, 1, n-m)) else B[n, m]; makelist(n!*T(n, 1), n, 1, 20); a(n):=if n=1 then 1 else ((n-1)!*sum(binomial(n+k-1, n-1) *sum((-1)^(j) *binomial(k, j)*sum(((-1)^i*j^i*binomial(j, n-i-1) *2^(-n+i+1))/i!, i, 0, n-1), j, 1, k), k, 1, n-1)); [From Vladimir Kruchinin, Feb 24 2012] CROSSREFS Sequence in context: A112935 A258377 A335636 * A308521 A183278 A331643 Adjacent sequences:  A201792 A201793 A201794 * A201796 A201797 A201798 KEYWORD nonn AUTHOR Vladimir Kruchinin, Dec 05 2011 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified May 12 10:44 EDT 2021. Contains 343821 sequences. (Running on oeis4.)