login

Reminder: The OEIS is hiring a new managing editor, and the application deadline is January 26.

A109954
Riordan array (1/(1+x)^3,x/(1+x)^2).
9
1, -3, 1, 6, -5, 1, -10, 15, -7, 1, 15, -35, 28, -9, 1, -21, 70, -84, 45, -11, 1, 28, -126, 210, -165, 66, -13, 1, -36, 210, -462, 495, -286, 91, -15, 1, 45, -330, 924, -1287, 1001, -455, 120, -17, 1, -55, 495, -1716, 3003, -3003, 1820, -680, 153, -19, 1, 66, -715, 3003, -6435, 8008, -6188, 3060, -969, 190, -21, 1
OFFSET
0,2
COMMENTS
Inverse of Riordan array (c(x)^3,xc(x)^2)) or A050155, with c(x) the g.f. of A000108. Unsigned array is the Riordan array (1/(1-x)^3,x(1-x)^2), with T(n,k)=binomial(n+k+2,2k+2)
Triangle of coefficients of polynomials defined by: c0=1; p(x, n) = (2 + c0 - x)*p(x, n - 1) + (-1 - c0 (2 - x))*p(x, n - 2) + c0*p(x, n - 3). Setting c0=0 gives A136674. - Roger L. Bagula, Apr 08 2008
The triangle entries Ts(n,k):=(-1)^(n-1)*A109954(n-1, k) = ((-1)^k)*binomial(n+k+1, 2(k+1)), n>=1, k=0..n-1, are the coefficients of x^(2*k) of the polynomial P(n,x^2) := (1 - (-1)^n*S(2*n,x))/x^2, with the Chebyshev S-polynomials with coefficient triangle given in A049310.
P(n,x^2) = - R(n+1,x)*S(n-1,x)/x^2 if n is even and P(n,x^2) = R(n,x)*S(n,x)/x^2 if n is odd, with R the monic integer Chebyshev T-polynomials with coefficient triangle given in A127672. - Wolfdieter Lang, Oct 24 2012.
FORMULA
Number triangle T(n, k)=(-1)^(n+k)*binomial(n+k+2, 2k+2) [offset (0, 0)].
EXAMPLE
Triangle T(n, k) begins:
n/k 0 1 2 3 4 5 6 7 8 9 10
0: 1
1: -3 1
2: 6 -5 1
3: -10 15 -7 1
4: 15 -35 28 -9 1
5: -21 70 -84 45 -11 1
6: 28 -126 210 -165 66 -13 1
7: -36 210 -462 495 -286 91 -15 1
8: 45 -330 924 -1287 1001 -455 120 -17 1
9: -55 495 -1716 3003 -3003 1820 -680 153 -19 1
10: 66 -715 3003 -6435 8008 -6188 3060 -969 190 -21 1
... Reformatted and extended by Wolfdieter Lang, Oct 24 2012.
MATHEMATICA
c0 = 1; p[x, -1] = 0; p[x, 0] = 1; p[x, 1] = 2 - x + c0; p[x_, n_] := p[x, n] = (2 + c0 - x)*p[x, n - 1] + (-1 - c0 (2 - x))*p[x, n - 2] + c0*p[x, n - 3]; Table[ExpandAll[p[x, n]], {n, 0, 10}]; a = Table[CoefficientList[p[x, n], x], {n, 0, 10}]; Flatten[a] - Roger L. Bagula, Apr 08 2008
CROSSREFS
Sequence in context: A112351 A143858 A258993 * A355010 A153641 A133545
KEYWORD
easy,sign,tabl
AUTHOR
Paul Barry, Jul 06 2005
STATUS
approved