This site is supported by donations to The OEIS Foundation.

Thanks to everyone who made a donation during our annual appeal!
To see the list of donors, or make a donation, see the OEIS Foundation home page.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A106516 A Pascal-like triangle based on 3^n. 7
 1, 3, 1, 9, 4, 1, 27, 13, 5, 1, 81, 40, 18, 6, 1, 243, 121, 58, 24, 7, 1, 729, 364, 179, 82, 31, 8, 1, 2187, 1093, 543, 261, 113, 39, 9, 1, 6561, 3280, 1636, 804, 374, 152, 48, 10, 1, 19683, 9841, 4916, 2440, 1178, 526, 200, 58, 11, 1, 59049, 29524, 14757, 7356, 3618 (list; table; graph; refs; listen; history; text; internal format)
 OFFSET 0,2 COMMENTS Row sums are A027649. Antidiagonal sums are A106517. From Wolfdieter Lang, Jan 09 2015: (Start) Alternating row sums give A025192. The A-sequence of this Riordan lower triangular matrix is [1, 1, repeat(0, )] (leading to the Pascal recurrence for T(n,k) for n >= k >= 1. The Z-sequence is [3, repeat(0, )] (leading to the recurrence T(n,0) = 3*T(n-1,0), n >= 1. For A- and Z-sequences see the W. Lang link under A006232. The inverse of this Riordan matrix is Tinv = ((1 - 2*x)/(1 + x), x/(1 + x)) given as a signed version of A093560: Tinv(n,m) = (-1)^(n-m)*A093560(n,m). (End) LINKS FORMULA Riordan array (1/(1-3x), x/(1-x)); Number triangle T(n, 0)=A000244(n), T(n, k)=T(n-1, k-1)+T(n-1, k); T(n, k)=sum{j=0..n, binomial(n, k+j)2^j}. From Peter Bala, Jul 16 2013: (Start) T(n,k) = binomial(n,k) + 2*sum {i = 1..n} 3^(i-1)*binomial(n-i,k). O.g.f.: (1 - t)/( (1 - 3*t)*(1 - (1 + x)*t) ) = 1 + (3 + x)*t + (9 + 4*x + x^2)*t^2 + .... The n-th row polynomial R(n,x) = 1/(x - 2)*( x*(x + 1)^n - 2*3^n ). (End) Closed-form formula for arbitrary left and right borders of Pascal-like triangle see A228196. - Boris Putievskiy, Aug 19 2013 T(n,k) = 4*T(n-1,k) + T(n-1,k-1) - 3*T(n-2,k) - 3*T(n-2,k-1), T(0,0)=1, T(1,0)=3, T(1,1)=1, T(n,k)=0 if k<0 or if k>n. - Philippe Deléham, Dec 26 2013 From Peter Bala, Dec 23 2014: (Start) exp(x) * e.g.f. for row n = e.g.f. for diagonal n. For example, for n = 3 we have exp(x)*(27 + 13*x + 5*x^2/2! + x^3/3!) = 27 + 40*x + 58*x^2/2! + 82*x^3/3! + 113*x^4/4! + .... The same property holds more generally for Riordan arrays of the form ( f(x), x/(1 - x) ). Let M denote the present triangle. For k = 0,1,2,... define M(k) to be the lower unit triangular block array /I_k 0\ \ 0  M/ having the k X k identity matrix I_k as the upper left block; in particular, M(0) = M. The infinite product M(0)*M(1)*M(2)*..., which is clearly well-defined, is equal to A143495 (but with a different offset). See the Example section. Cf. A055248. (End) EXAMPLE The triangle T(n,k) begins: n\k     0     1     2    3    4    5   6   7  8  9 10 ... 0:      1 1:      3     1 2:      9     4     1 3:     27    13     5    1 4:     81    40    18    6    1 5:    243   121    58   24    7    1 6:    729   364   179   82   31    8   1 7:   2187  1093   543  261  113   39   9   1 8:   6561  3280  1636  804  374  152  48  10  1 9:  19683  9841  4916 2440 1178  526 200  58 11  1 10: 59049 29524 14757 7356 3618 1704 726 258 69 12  1 ... reformatted and extended. - Wolfdieter Lang, Jan 06 2015 ---------------------------------------------------------- With the array M(k) as defined in the Formula section, the infinite product M(0)*M(1)*M(2)*... begins / 1        \/1           \/1        \       /1         \ | 3  1     ||0  1        ||0 1      |      | 3  1      | | 9  4 1   ||0  3  1     ||0 0 1    |... = | 9  7  1   | |27 13 5 1 ||0  9  4 1   ||0 0 3 1  |      |27 37 12 1 | |...       ||0 27 13 5 1 ||0 0 9 4 1|      |...        | |...       ||...         ||...      |      |...        | = A143495. - Peter Bala, Dec 23 2014 MATHEMATICA a106516[n_] := Block[{a, k}, a[x_] := Flatten@ Last@ Reap[For[k = -1, k < x, Sow[Binomial[x, k] + 2 Sum[3^(i - 1)*Binomial[x - i, k], {i, 1, x}]], k++]]; Flatten@Array[a, n, 0]]; a106516[11] (* Michael De Vlieger, Dec 23 2014 *) CROSSREFS Columns 1, 2, 3, 4, 5: A003462, A000340, A052150, A097786, A097787. A055248, A143495. Sequence in context: A126186 A162852 A054448 * A140071 A285280 A285266 Adjacent sequences:  A106513 A106514 A106515 * A106517 A106518 A106519 KEYWORD easy,nonn,tabl AUTHOR Paul Barry, May 05 2005 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified January 17 16:44 EST 2019. Contains 319235 sequences. (Running on oeis4.)