login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A014563 a(n+1) is the smallest number > a(n) such that the digits of a(n)^2 are all (with multiplicity) contained in the digits of a(n+1)^2, with a(0)=1. 9
1, 4, 13, 14, 31, 36, 54, 96, 113, 311, 487, 854, 1036, 1277, 1646, 3214, 8351, 10456, 11414, 11536, 11563, 17606, 17813, 30287, 36786, 41544, 54927, 56547, 56586, 57363, 62469, 62634, 72813, 72897, 76944, 78345, 95061, 97944, 100963, 101944 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,2

COMMENTS

Probably infinite. - David W. Wilson, Jan 29 2002

LINKS

Reinhard Zumkeller, Table of n, a(n) for n = 0..1000

EXAMPLE

13^2 = 169 and 14 is the next smallest number whose square (in this case 196) contains the digits 1,6,9.

MATHEMATICA

snd[n_]:=Module[{k=n+1}, While[!AllTrue[Select[Transpose[{DigitCount[n^2],

DigitCount[k^2]}], #[[1]]>0&], #[[1]]<=#[[2]]&], k++]; k]; NestList[ snd, 1, 40] (* The program uses the AllTrue function from Mathematica version 10 *) (* Harvey P. Dale, Sep 21 2016 *)

PROG

(Haskell)

import Data.List ((\\))

a014563 n = a014563_list !! n

a014563_list = 1 : f 1 (drop 2 a000290_list) where

f x (q:qs) | null $ xs \\ (show q) = y : f y qs

| otherwise = f x qs

where y = a000196 q; xs = show (x * x)

-- Reinhard Zumkeller, Nov 22 2012

CROSSREFS

If "contained in" is replaced by "properly contained in" we get A065297.

Cf. A066825, A067633, A067634, A067635, A065297.

Cf. A000290, A000196.

Sequence in context: A135783 A135406 A066825 * A066774 A075339 A089733

Adjacent sequences: A014560 A014561 A014562 * A014564 A014565 A014566

KEYWORD

base,nonn,nice

AUTHOR

Marc Paulhus, Jan 29 2002

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified March 28 01:22 EDT 2023. Contains 361575 sequences. (Running on oeis4.)