|
|
A014563
|
|
a(n+1) is the smallest number > a(n) such that the digits of a(n)^2 are all (with multiplicity) contained in the digits of a(n+1)^2, with a(0)=1.
|
|
9
|
|
|
1, 4, 13, 14, 31, 36, 54, 96, 113, 311, 487, 854, 1036, 1277, 1646, 3214, 8351, 10456, 11414, 11536, 11563, 17606, 17813, 30287, 36786, 41544, 54927, 56547, 56586, 57363, 62469, 62634, 72813, 72897, 76944, 78345, 95061, 97944, 100963, 101944
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
0,2
|
|
COMMENTS
|
Probably infinite. - David W. Wilson, Jan 29 2002
|
|
LINKS
|
Reinhard Zumkeller, Table of n, a(n) for n = 0..1000
|
|
EXAMPLE
|
13^2 = 169 and 14 is the next smallest number whose square (in this case 196) contains the digits 1,6,9.
|
|
MATHEMATICA
|
snd[n_]:=Module[{k=n+1}, While[!AllTrue[Select[Transpose[{DigitCount[n^2],
DigitCount[k^2]}], #[[1]]>0&], #[[1]]<=#[[2]]&], k++]; k]; NestList[ snd, 1, 40] (* The program uses the AllTrue function from Mathematica version 10 *) (* Harvey P. Dale, Sep 21 2016 *)
|
|
PROG
|
(Haskell)
import Data.List ((\\))
a014563 n = a014563_list !! n
a014563_list = 1 : f 1 (drop 2 a000290_list) where
f x (q:qs) | null $ xs \\ (show q) = y : f y qs
| otherwise = f x qs
where y = a000196 q; xs = show (x * x)
-- Reinhard Zumkeller, Nov 22 2012
|
|
CROSSREFS
|
If "contained in" is replaced by "properly contained in" we get A065297.
Cf. A066825, A067633, A067634, A067635, A065297.
Cf. A000290, A000196.
Sequence in context: A135783 A135406 A066825 * A066774 A075339 A089733
Adjacent sequences: A014560 A014561 A014562 * A014564 A014565 A014566
|
|
KEYWORD
|
base,nonn,nice
|
|
AUTHOR
|
Marc Paulhus, Jan 29 2002
|
|
STATUS
|
approved
|
|
|
|