OFFSET
1,1
COMMENTS
This is to semiprimes A001358 as A074741 is to primes A000040. What is the semiprime analog of D. R. Heath-Brown's conjecture: Sum_{prime(n)<=N} (prime(n)-prime(n-1))^2 ~ 2*N*log(N) and Marek Wolf's conjecture: Sum_{prime(n)<N} (prime(n)-prime(n-1))^2 = 2*N^2/pi(N) + error term(N), pi(N)=A000720(n).
LINKS
Harvey P. Dale, Table of n, a(n) for n = 1..1000
EXAMPLE
a(10) = (6-4)^2 + (9-6)^2 + (10-9)^2 + (14-10)^2 + (15-14)^2 + (21-15)^2 + (22-21)^2 + (25-22)^2 + (26-25)^2 + (33-26)^2 = (2^2) + (3^2) + (1^2) + (4^2) + (1^2) + (6^2) + (1^2) + (3^2) + (1^2) + (7^2) = 127.
MAPLE
A001358 := proc(n) option remember ; local a ; if n = 1 then 4; else for a from A001358(n-1)+1 do if numtheory[bigomega](a) = 2 then RETURN(a) ; fi ; od: fi ; end: A065516 := proc(n) A001358(n+1)-A001358(n) ; end: A135406 := proc(n) add( (A065516(k))^2, k=1..n) ; end: seq(A135406(n), n=1..80) ; # R. J. Mathar, Jan 07 2008
MATHEMATICA
Accumulate[Differences[Select[Range[200], PrimeOmega[#]==2&]]^2] (* Harvey P. Dale, Mar 05 2015 *)
CROSSREFS
KEYWORD
easy,nonn
AUTHOR
Jonathan Vos Post, Dec 09 2007
EXTENSIONS
More terms from R. J. Mathar, Jan 07 2008
STATUS
approved