login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A135406
Sum of squares of gaps between consecutive semiprimes.
1
4, 13, 14, 30, 31, 67, 68, 77, 78, 127, 128, 129, 138, 139, 188, 197, 201, 217, 221, 222, 238, 247, 263, 288, 297, 322, 331, 332, 333, 349, 353, 354, 355, 476, 501, 517, 526, 527, 531, 532, 533, 569, 585, 586, 635, 636, 637, 641, 642, 723, 732, 733, 737, 762
OFFSET
1,1
COMMENTS
This is to semiprimes A001358 as A074741 is to primes A000040. What is the semiprime analog of D. R. Heath-Brown's conjecture: Sum_{prime(n)<=N} (prime(n)-prime(n-1))^2 ~ 2*N*log(N) and Marek Wolf's conjecture: Sum_{prime(n)<N} (prime(n)-prime(n-1))^2 = 2*N^2/pi(N) + error term(N), pi(N)=A000720(n).
LINKS
FORMULA
a(n) = SUM[k=1..n] A065516(k)^2 = SUM[k=1..n] (A001358(n+1) - A001358(n))^2.
EXAMPLE
a(10) = (6-4)^2 + (9-6)^2 + (10-9)^2 + (14-10)^2 + (15-14)^2 + (21-15)^2 + (22-21)^2 + (25-22)^2 + (26-25)^2 + (33-26)^2 = (2^2) + (3^2) + (1^2) + (4^2) + (1^2) + (6^2) + (1^2) + (3^2) + (1^2) + (7^2) = 127.
MAPLE
A001358 := proc(n) option remember ; local a ; if n = 1 then 4; else for a from A001358(n-1)+1 do if numtheory[bigomega](a) = 2 then RETURN(a) ; fi ; od: fi ; end: A065516 := proc(n) A001358(n+1)-A001358(n) ; end: A135406 := proc(n) add( (A065516(k))^2, k=1..n) ; end: seq(A135406(n), n=1..80) ; # R. J. Mathar, Jan 07 2008
MATHEMATICA
Accumulate[Differences[Select[Range[200], PrimeOmega[#]==2&]]^2] (* Harvey P. Dale, Mar 05 2015 *)
CROSSREFS
KEYWORD
easy,nonn
AUTHOR
Jonathan Vos Post, Dec 09 2007
EXTENSIONS
More terms from R. J. Mathar, Jan 07 2008
STATUS
approved