login
A135407
Partial products of A000032 (Lucas numbers beginning at 2).
11
2, 2, 6, 24, 168, 1848, 33264, 964656, 45338832, 3445751232, 423827401536, 84341652905664, 27158012235623808, 14149324374760003968, 11927880447922683345024, 16269628930966540082612736
OFFSET
0,1
COMMENTS
This is to A000032 as A003266 is to A000045. a(n) is asymptotic to C*phi^(n*(n+1)/2) where phi=(1+sqrt(5))/2 is the golden ratio and C = 1.3578784076121057013874397... (see A218490). - Corrected and extended by Vaclav Kotesovec, Oct 30 2012
LINKS
FORMULA
a(n) = Product_{k=0..n} A000032(k).
C = exp( Sum_{k>=1} 1/(k*(((3-sqrt(5))/2)^k-(-1)^k)) ). - Vaclav Kotesovec, Jun 08 2013
EXAMPLE
a(0) = L(0) = 2.
a(1) = L(0)*L(1) = 2*1 = 2.
a(2) = L(0)*L(1)*L(2) = 2*1*3 = 6.
a(3) = L(0)*L(1)*L(2)*L(3) = 2*1*3*4 = 24.
MATHEMATICA
Rest[FoldList[Times, 1, LucasL[Range[0, 20]]]] (* Harvey P. Dale, Aug 21 2013 *)
Table[Round[GoldenRatio^(n(n+1)/2) QPochhammer[-1, GoldenRatio-2, n+1]], {n, 0, 20}] (* Vladimir Reshetnikov, Sep 14 2016 *)
PROG
(PARI) a(n) = prod(k=0, n, fibonacci(k+1)+fibonacci(k-1)); \\ Michel Marcus, Oct 13 2016
CROSSREFS
KEYWORD
easy,nonn
AUTHOR
Jonathan Vos Post, Dec 09 2007
STATUS
approved