login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Sum of squares of gaps between consecutive semiprimes.
1

%I #14 May 25 2018 08:30:52

%S 4,13,14,30,31,67,68,77,78,127,128,129,138,139,188,197,201,217,221,

%T 222,238,247,263,288,297,322,331,332,333,349,353,354,355,476,501,517,

%U 526,527,531,532,533,569,585,586,635,636,637,641,642,723,732,733,737,762

%N Sum of squares of gaps between consecutive semiprimes.

%C This is to semiprimes A001358 as A074741 is to primes A000040. What is the semiprime analog of D. R. Heath-Brown's conjecture: Sum_{prime(n)<=N} (prime(n)-prime(n-1))^2 ~ 2*N*log(N) and Marek Wolf's conjecture: Sum_{prime(n)<N} (prime(n)-prime(n-1))^2 = 2*N^2/pi(N) + error term(N), pi(N)=A000720(n).

%H Harvey P. Dale, <a href="/A135406/b135406.txt">Table of n, a(n) for n = 1..1000</a>

%F a(n) = SUM[k=1..n] A065516(k)^2 = SUM[k=1..n] (A001358(n+1) - A001358(n))^2.

%e a(10) = (6-4)^2 + (9-6)^2 + (10-9)^2 + (14-10)^2 + (15-14)^2 + (21-15)^2 + (22-21)^2 + (25-22)^2 + (26-25)^2 + (33-26)^2 = (2^2) + (3^2) + (1^2) + (4^2) + (1^2) + (6^2) + (1^2) + (3^2) + (1^2) + (7^2) = 127.

%p A001358 := proc(n) option remember ; local a ; if n = 1 then 4; else for a from A001358(n-1)+1 do if numtheory[bigomega](a) = 2 then RETURN(a) ; fi ; od: fi ; end: A065516 := proc(n) A001358(n+1)-A001358(n) ; end: A135406 := proc(n) add( (A065516(k))^2,k=1..n) ; end: seq(A135406(n),n=1..80) ; # _R. J. Mathar_, Jan 07 2008

%t Accumulate[Differences[Select[Range[200],PrimeOmega[#]==2&]]^2] (* _Harvey P. Dale_, Mar 05 2015 *)

%Y Cf. A000040, A001358, A065516, A074741.

%K easy,nonn

%O 1,1

%A _Jonathan Vos Post_, Dec 09 2007

%E More terms from _R. J. Mathar_, Jan 07 2008