The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A171588 The Pell word: Fixed point of the morphism 0->001, 1->0. 26
 0, 0, 1, 0, 0, 1, 0, 0, 0, 1, 0, 0, 1, 0, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 0, 1, 0, 0, 1, 0, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 0, 1, 0, 0, 1, 0, 0, 0, 1, 0, 0, 1, 0, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 0, 1, 0, 0, 1, 0, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 0, 1, 0, 0, 1, 0, 0, 0, 1, 0, 0, 1, 0, 0, 0, 1, 0, 0, 1, 0, 0, 1 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,1 COMMENTS From Peter Bala, Nov 22 2013: (Start) Sturmian word: equals the limit word S(infinity) where S(0) = 0, S(1) = 001 and for n >= 1, S(n+1) = S(n)S(n)S(n-1). See the examples below. This sequence corresponds to the case k = 2 of the Sturmian word S_k(infinity) as defined in A080764. See A159684 for the case k = 1. (End) Characteristic word with slope 1 - 1/sqrt(2). Since the characteristic word with slope 1-theta is the mirror image of the characteristic word with slope theta, a(n)= 1 - A080764(n) for all n. - Michel Dekking, Jan 31 2017 The positions of 0 comprise A001951 (Beatty sequence for sqrt(2)); the positions of 1 comprise A001952 (Beatty sequence for 2+sqrt(2)). - Clark Kimberling, May 11 2017 REFERENCES J.-P. Allouche and J. Shallit, Automatic Sequences, Cambridge Univ. Press, 2003, p. 284. F. Michel Dekking, Substitution invariant Sturmian words and binary trees, arXiv:1705.08607, 2017. LINKS Vincenzo Librandi, Table of n, a(n) for n = 1..5000 Scott Balchin and Dan Rust, Computations for Symbolic Substitutions, Journal of Integer Sequences, Vol. 20 (2017), Article 17.4.1. Jean Berstel and Juhani KarhumÃ¤ki, Combinatorics on words-a tutorial. Bull. Eur. Assoc. Theor. Comput. Sci. EATCS, 79:178-228, 2003. M. Lothaire, Combinatorics on Words. Wikipedia, Sturmian word FORMULA a(n) = floor((n + 1)/(2 + sqrt(2))) - floor(n /(2 + sqrt(2))). - Peter Bala, Nov 22 2013 a(n) = floor((n+1)(1 - 1/sqrt(2)) - floor(n (1 - 1/sqrt(2)). - Michel Dekking, Jan 31 2017 EXAMPLE From Peter Bala, Nov 22 2013: (Start) The sequence of words S(n) begins S(0) = 0 S(1) = 001 S(2) = 001 001 0 S(3) = 0010010 0010010 001 S(4) = 00100100010010001 00100100010010001 0010010. The lengths of the words are [1, 3, 7, 17, 41, ...] = A001333 (apart from the initial term).  (End) MAPLE Digits := 50: u := evalf(2 + sqrt(2)): A171588 := n->floor((n+1)/u) - floor(n/u): seq(A171588(n), n = 1..80); # Peter Bala, Nov 22 2013 MATHEMATICA Table[Floor[(n + 1) (1 - 1/Sqrt[2]) - Floor[n (1 - 1/Sqrt[2])]], {n, 100}] (* Vincenzo Librandi, Jan 31 2017 *) Nest[Flatten[# /. {0 -> {0, 0, 1}, 1 -> {0}}] &, {0}, 6] (* Clark Kimberling, May 11 2017 *) PROG (MAGMA) [Floor((n+1)*(1-1/Sqrt(2))-Floor(n*(1-1/Sqrt(2)))): n in [1..100]]; // Vincenzo Librandi, Jan 31 2017 CROSSREFS Cf. A000129, A001333, A001951, A001952, A003849, A080764, A159684. Sequence in context: A238470 A286748 A289001 * A289035 A276397 A286747 Adjacent sequences:  A171585 A171586 A171587 * A171589 A171590 A171591 KEYWORD nonn,easy AUTHOR Alexis Monnerot-Dumaine (alexis.monnerotdumaine(AT)gmail.com), Dec 12 2009 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified June 6 13:49 EDT 2020. Contains 334827 sequences. (Running on oeis4.)