login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A238470
Period 7: repeat [0, 0, 1, 0, 0, -1, 0].
5
0, 0, 1, 0, 0, -1, 0, 0, 0, 1, 0, 0, -1, 0, 0, 0, 1, 0, 0, -1, 0, 0, 0, 1, 0, 0, -1, 0, 0, 0, 1, 0, 0, -1, 0, 0, 0, 1, 0, 0, -1, 0, 0, 0, 1, 0, 0, -1, 0, 0, 0, 1, 0, 0, -1, 0, 0, 0, 1, 0, 0, -1, 0, 0, 0, 1, 0, 0, -1, 0, 0, 0, 1, 0, 0, -1, 0, 0, 0, 1, 0, 0, -1, 0, 0, 0, 1, 0, 0, -1, 0
OFFSET
0
COMMENTS
This sequence is called C(n) in a comment on A234044, where it appears, together with five others called a,b,c, and A, B, in a formula for 2*exp(2*Pi*n*I/7). See A234044 for details and the example for n = 4.
FORMULA
G.f.: x^2*(1 - x^3)/(1 - x^7).
a(n+7) = a(n), n >= 0, with a(k) = 0 for k = 0, 1, 3, 4, 6 and a(2) = -a(5) = 1.
From Wesley Ivan Hurt, Jul 18 2016: (Start)
a(n) = floor((1+n)/7) - floor((2+n)/7) - floor((4+n)/7) + floor((5+n)/7).
a(n) + a(n-1) + a(n-2) + a(n-3) + a(n-4) + a(n-5) + a(n-6) for n>5. (End)
MAPLE
seq(op([0, 0, 1, 0, 0, -1, 0]), n=0..20); # Wesley Ivan Hurt, Jul 18 2016
MATHEMATICA
PadRight[{}, 100, {0, 0, 1, 0, 0, -1, 0}] (* Wesley Ivan Hurt, Jul 18 2016 *)
PROG
(PARI) a(n)=[0, 0, 1, 0, 0, -1, 0][n%7+1] \\ Charles R Greathouse IV, Jul 13 2016
(Magma) &cat [[0, 0, 1, 0, 0, -1, 0]^^20]; // Wesley Ivan Hurt, Jul 18 2016
CROSSREFS
KEYWORD
sign,easy
AUTHOR
Wolfdieter Lang, Feb 27 2014
STATUS
approved