OFFSET
1
FORMULA
For k >= n we have T(k,n) = A379678(n,k).
EXAMPLE
The T(72,17) = 2 factorizations are: (2*3*12), (8*9).
Triangle begins:
0
0 1
0 0 1
0 0 0 1
0 0 0 0 1
0 0 0 0 1 1
0 0 0 0 0 0 1
0 0 0 0 0 1 0 1
0 0 0 0 0 0 0 0 1
0 0 0 0 0 0 1 0 0 1
0 0 0 0 0 0 0 0 0 0 1
0 0 0 0 0 0 1 1 0 0 0 1
0 0 0 0 0 0 0 0 0 0 0 0 1
0 0 0 0 0 0 0 0 1 0 0 0 0 1
0 0 0 0 0 0 0 1 0 0 0 0 0 0 1
0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 1
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1
0 0 0 0 0 0 0 0 1 0 1 0 0 0 0 0 0 1
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1
0 0 0 0 0 0 0 0 1 0 0 1 0 0 0 0 0 0 0 1
For example, row n = 12 counts the following strict factorizations:
k=1 k=2 k=3 k=4 k=5 k=6 k=7 k=8 k=9 k=10 k=11 k=12
. . . . . . (3*4) (2*6) . . . (12)
MATHEMATICA
facs[n_]:=If[n<=1, {{}}, Join@@Table[Map[Prepend[#, d]&, Select[facs[n/d], Min@@#>=d&]], {d, Rest[Divisors[n]]}]];
Table[Length[Select[facs[n], UnsameQ@@#&&Total[#]==k&]], {n, 30}, {k, n}]
CROSSREFS
KEYWORD
AUTHOR
Gus Wiseman, Jan 03 2025
STATUS
approved