|
|
A238469
|
|
Period 7: repeat [0, 1, 0, 0, 0, 0, -1].
|
|
5
|
|
|
0, 1, 0, 0, 0, 0, -1, 0, 1, 0, 0, 0, 0, -1, 0, 1, 0, 0, 0, 0, -1, 0, 1, 0, 0, 0, 0, -1, 0, 1, 0, 0, 0, 0, -1, 0, 1, 0, 0, 0, 0, -1, 0, 1, 0, 0, 0, 0, -1, 0, 1, 0, 0, 0, 0, -1, 0, 1, 0, 0, 0, 0, -1, 0, 1, 0, 0, 0, 0, -1, 0, 1, 0, 0, 0, 0, -1, 0, 1, 0, 0, 0, 0, -1, 0, 1, 0, 0, 0, 0, -1
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
0
|
|
COMMENTS
|
This sequence is called B(n) in a comment on A234044 where it appears, together with five others, in a formula for 2*exp(2*Pi*n*I/7). See A234044 for details, also for the n = 4 example.
|
|
LINKS
|
|
|
FORMULA
|
G.f.: x*(1 - x^5)/(1 - x^7).
a(n+7) = a(n), n >= 0, a(k) = 0 for k = 0, 2, 3, 4, 5 and a(1) = -a(6) = 1.
a(n) = (n+1)^6 mod 7 - (n+6)^6 mod 7. - Paolo P. Lava, Feb 28 2014
a(n) + a(n-1) + a(n-2) + a(n-3) + a(n-4) + a(n-5) + a(n-6) = 0 for n>5.
a(n) = floor(n/7) - floor((1+n)/7) - floor((5+n)/7) + floor((6+n)/7). (End)
|
|
MAPLE
|
P:=proc(q) local n;
for n from 0 to q do print(((n+1)^6 mod 7)-((n+6)^6 mod 7));
|
|
MATHEMATICA
|
|
|
PROG
|
|
|
CROSSREFS
|
|
|
KEYWORD
|
sign,easy
|
|
AUTHOR
|
|
|
STATUS
|
approved
|
|
|
|