login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A238468
Period 7: repeat [0, 0, -1, 1, -1, 1, 0].
5
0, 0, -1, 1, -1, 1, 0, 0, 0, -1, 1, -1, 1, 0, 0, 0, -1, 1, -1, 1, 0, 0, 0, -1, 1, -1, 1, 0, 0, 0, -1, 1, -1, 1, 0, 0, 0, -1, 1, -1, 1, 0, 0, 0, -1, 1, -1, 1, 0, 0, 0, -1, 1, -1, 1, 0, 0, 0, -1, 1, -1, 1, 0, 0, 0, -1, 1, -1, 1, 0, 0, 0, -1, 1, -1, 1, 0, 0, 0, -1, 1, -1, 1, 0, 0, 0, -1, 1, -1, 1, 0
OFFSET
0
COMMENTS
This is the sequence called A(n) in a comment on A234044, which appears with five others in a formula for 2*exp(2*Pi*n*I/7). See A234044 for details and an example for n = 4.
FORMULA
G.f.: x^2*(-1 + x - x^2 + x^3)/(1 - x^7).
a(n+7) = a(n), n>=0, with a(0) = a(1) = a(6) =0 and -a(2) = a(3) = -a(4) = a(6) = 1.
From Wesley Ivan Hurt, Jul 17 2016: (Start)
a(n) + a(n-1) + a(n-2) + a(n-3) + a(n-4) + a(n-5) + a(n-6) for n>6.
a(n) = - floor((1+n)/7) + 2*floor((2+n)/7) - 2*floor((3+n)/7) + 2*floor((4+n)/7) - floor((5+n)/7). (End)
MAPLE
seq(op([0, 0, -1, 1, -1, 1, 0]), n=0..20); # Wesley Ivan Hurt, Jul 17 2016
MATHEMATICA
PadRight[{}, 100, {0, 0, -1, 1, -1, 1, 0}] (* Wesley Ivan Hurt, Jul 17 2016 *)
PROG
(Magma) &cat [[0, 0, -1, 1, -1, 1, 0]^^20]; // Wesley Ivan Hurt, Jul 17 2016
(PARI) a(n)=(n+2)\7*2 - (n+3)\7*2 + (n+4)\7*2 - (n+5)\7 - (n+1)\7 \\ Charles R Greathouse IV, Jul 17 2016
CROSSREFS
KEYWORD
sign,easy
AUTHOR
Wolfdieter Lang, Feb 27 2014
STATUS
approved