login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A238471
a(n) = binomial(5n+6, 4)/5 for n >= 0.
2
3, 66, 364, 1197, 2990, 6293, 11781, 20254, 32637, 49980, 73458, 104371, 144144, 194327, 256595, 332748, 424711, 534534, 664392, 816585, 993538, 1197801, 1432049, 1699082, 2001825, 2343328, 2726766, 3155439, 3632772, 4162315, 4747743, 5392856, 6101579, 6877962
OFFSET
0,1
COMMENTS
This sequence appears in the 5-section of A234042.
FORMULA
a(n) = binomial(5*n+6, 4)/5 = (5*n+6)*(5*n+3)*(5*n+4)*(n+1)/4! for n >= 0.
a(n) = A234042(5*n+2) for n >= 0.
a(n) = 3*b(n) + 51*b(n-1) + 64*b(n-2) + 7*b(n-3), with b(n) = binomial(n+4,4) = A000332(n) for n >= 0.
O.g.f.: (3 + 51*x + 64*x^2 + 7*x^3)/(1-x)^5.
Sum_{n>=0} 1/a(n) = 2*sqrt(5+2/sqrt(5))*Pi - 10*sqrt(5)*log(phi) - 15*log(5) + 20, where phi is the golden ratio (A001622). - Amiram Eldar, Sep 20 2022
MATHEMATICA
a[n_] := Binomial[5*n + 6, 4]/5; Array[a, 40, 0] (* Amiram Eldar, Sep 20 2022 *)
KEYWORD
nonn,easy
AUTHOR
Wolfdieter Lang, Feb 28 2014
STATUS
approved