login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A187969 a(n) = [nr+kr]-[nr]-[kr], where r=sqrt(2), k=3, [ ]=floor. 4
0, 1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1, 0, 1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1, 0, 1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1, 0, 1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1, 0, 1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1, 0, 1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1, 0, 1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1, 0, 1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1, 0, 1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1, 0 (list; graph; refs; listen; history; text; internal format)
OFFSET

1

COMMENTS

See A187950.

LINKS

G. C. Greubel, Table of n, a(n) for n = 1..10000

FORMULA

a(n) = [(n+3)*r] - [n*r] - [3*r], where r=sqrt(2).

MATHEMATICA

r=2^(1/2);

seqA=Table[Floor[(n+3)r]-Floor[n*r]-Floor[3r], {n, 1, 220}]   (* A187969 *)

Flatten[Position[seqA, 0] ]   (* A187970 *)

Flatten[Position[seqA, 1] ]   (* A187971 *)

PROG

(PARI) for(n=1, 30, print1(floor((n+3)*sqrt(2)) - floor(n*sqrt(2)) - floor(3*sqrt(2)), ", ")) \\ G. C. Greubel, Jan 31 2018

(MAGMA) [Floor((n+3)*Sqrt(2)) - Floor(n*Sqrt(2)) - Floor(3*Sqrt(2)): n in [1..30]]; // G. C. Greubel, Jan 31 2018

CROSSREFS

Cf. A187950, A187970, A187971.

Sequence in context: A284683 A288673 A030213 * A132151 A238469 A288596

Adjacent sequences:  A187966 A187967 A187968 * A187970 A187971 A187972

KEYWORD

nonn

AUTHOR

Clark Kimberling, Mar 17 2011

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified January 25 02:37 EST 2022. Contains 350565 sequences. (Running on oeis4.)