The OEIS is supported by the many generous donors to the OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A187972 a(n) = [nr+kr]-[nr]-[kr], where r=sqrt(2), k=4, [ ]=floor. 4
 1, 1, 0, 1, 0, 1, 1, 0, 1, 0, 1, 1, 1, 1, 0, 1, 0, 1, 1, 0, 1, 0, 1, 1, 1, 1, 0, 1, 0, 1, 1, 0, 1, 0, 1, 1, 0, 1, 0, 1, 1, 1, 1, 0, 1, 0, 1, 1, 0, 1, 0, 1, 1, 1, 1, 0, 1, 0, 1, 1, 0, 1, 0, 1, 1, 0, 1, 0, 1, 1, 1, 1, 0, 1, 0, 1, 1, 0, 1, 0, 1, 1, 1, 1, 0, 1, 0, 1, 1, 0, 1, 0, 1, 1, 1, 1, 0, 1, 0, 1, 1, 0, 1, 0, 1, 1, 0 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1 COMMENTS See A187950. LINKS G. C. Greubel, Table of n, a(n) for n = 1..10000 FORMULA a(n) = [(n+4)*r] - [n*r] - [4*r], where r=sqrt(2). MATHEMATICA r=2^(1/2); seqA=Table[Floor[(n+4)r]-Floor[n*r]-Floor[4r], {n, 1, 220}] (* A187972 *) Flatten[Position[seqA, 0] ] (* A187973 *) Flatten[Position[seqA, 1] ] (* A187974 *) PROG (PARI) for(n=1, 30, print1(floor((n+4)*sqrt(2)) - floor(n*sqrt(2)) - floor(4*sqrt(2)), ", ")) \\ G. C. Greubel, Jan 31 2018 (Magma) [Floor((n+4)*Sqrt(2)) - Floor(n*Sqrt(2)) - Floor(4*Sqrt(2)): n in [1..30]]; // G. C. Greubel, Jan 31 2018 CROSSREFS Cf. A187950, A187973, A187974. Sequence in context: A189163 A189129 A267269 * A248396 A285952 A103842 Adjacent sequences: A187969 A187970 A187971 * A187973 A187974 A187975 KEYWORD nonn AUTHOR Clark Kimberling, Mar 17 2011 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified October 2 23:30 EDT 2023. Contains 365841 sequences. (Running on oeis4.)