login
A376583
Parity of A002260.
2
1, 1, 0, 1, 0, 1, 1, 0, 1, 0, 1, 0, 1, 0, 1, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1
OFFSET
1
COMMENTS
This is also the triangle:
1;
1, 0;
1, 0, 1;
1, 0, 1, 0;
1, 0, 1, 0, 1;
...
This is also the array:
1 1 1 1 1 1 1 1 ...
0 0 0 0 0 0 0 0 ...
1 1 1 1 1 1 1 1 ...
0 0 0 0 0 0 0 0 ...
1 1 1 1 1 1 1 1 ...
0 0 0 0 0 0 0 0 ...
1 1 1 1 1 1 1 1 ...
0 0 0 0 0 0 0 0 ...
...
read by antidiagonals.
As this sequence is "the opposite" of A060510, most things mentioned there also apply here.
Essentially the same as A177990. - R. J. Mathar, Oct 24 2024
The choice of offset 0 together with signed terms might be advantageous as this corresponds to the sign pattern of various kinds of Chebyshev polynomials. Under these assumptions T(n, k) = cos(k*Pi/2) and T(n, k) = A369736(n, n-k). - Peter Luschny, Jan 03 2025
FORMULA
a(n) = A000035(A002260(n)).
a(n) = 1 - A060510(n-1).
MATHEMATICA
fp[i_]:=If[OddQ[i], 1, 0]; fp/@Flatten[Table[Range[n], {n, 14}]] (* James C. McMahon, Oct 23 2024 *)
PROG
(PARI) a(n) = (n - binomial(floor(sqrt(2*n)+1/2), 2)) % 2;
(Python)
from math import isqrt
def A376583(n): return n&1^((m:=isqrt(n<<3)+1>>1)*(m-1)>>1&1) # Chai Wah Wu, Oct 23 2024
CROSSREFS
Cf. A000035, A002260, A060510 (parity of A002262), A128174 (mirror triangle), A369736.
Sequence in context: A189163 A189129 A267269 * A187972 A248396 A285952
KEYWORD
nonn,tabl,easy
AUTHOR
Ruud H.G. van Tol, Sep 29 2024
STATUS
approved