This site is supported by donations to The OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A060510 Alternating with hexagonal stutters: if n is hexagonal (2k^2 - k, i.e., A000384) then a(n)=a(n-1), otherwise a(n) = 1 - a(n-1). 3
 0, 0, 1, 0, 1, 0, 0, 1, 0, 1, 0, 1, 0, 1, 0, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1 (list; table; graph; refs; listen; history; text; internal format)
 OFFSET 0,1 COMMENTS The row sums equal A110654 and the alternating row sums equal A130472. - Johannes W. Meijer, Aug 12 2015 LINKS FORMULA a(n) = A002262(n) mod 2 = A060511(n) mod 2. G.f.: x/(1-x^2) - (1+x)^(-1)*Sum(n>=1, x^(n*(2*n-1))). The sum is related to Theta functions. - Robert Israel, Aug 12 2015 EXAMPLE Hexagonal numbers start 1,6,15, ... so this sequence goes 0 0 (stutter at 1) 1 0 1 0 0 (stutter at 6) 1 0 1 0 1 0 1 0 0 (stutter at 15) 1 0, etc. As a triangle, sequence begins: 0; 0, 1; 0, 1, 0; 0, 1, 0, 1; 0, 1, 0, 1, 0; 0, 1, 0, 1, 0, 1; ... MAPLE T := proc(n, k): if k mod 2 = 1 then return(1) else return(0) fi: end: seq(seq(T(n, k), k=0..n), n=0..13);  # Johannes W. Meijer, Aug 12 2015 CROSSREFS As a simple triangular or square array virtually the only sequences which appear are A000004, A000012 and A000035. Cf. A230135. Sequence in context: A188037 A144598 A144606 * A219071 A072629 A164292 Adjacent sequences:  A060507 A060508 A060509 * A060511 A060512 A060513 KEYWORD easy,nonn,tabl AUTHOR Henry Bottomley, Mar 22 2001 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified April 19 04:19 EDT 2019. Contains 322237 sequences. (Running on oeis4.)