login
This site is supported by donations to The OEIS Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A060510 Alternating with hexagonal stutters: if n is hexagonal (2k^2 - k, i.e., A000384) then a(n)=a(n-1), otherwise a(n) = 1 - a(n-1). 3
0, 0, 1, 0, 1, 0, 0, 1, 0, 1, 0, 1, 0, 1, 0, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1 (list; table; graph; refs; listen; history; text; internal format)
OFFSET

0,1

COMMENTS

The row sums equal A110654 and the alternating row sums equal A130472. - Johannes W. Meijer, Aug 12 2015

LINKS

Table of n, a(n) for n=0..104.

FORMULA

a(n) = A002262(n) mod 2 = A060511(n) mod 2.

G.f.: x/(1-x^2) - (1+x)^(-1)*Sum(n>=1, x^(n*(2*n-1))). The sum is related to Theta functions. - Robert Israel, Aug 12 2015

EXAMPLE

Hexagonal numbers start 1,6,15, ... so this sequence goes 0 0 (stutter at 1) 1 0 1 0 0 (stutter at 6) 1 0 1 0 1 0 1 0 0 (stutter at 15) 1 0, etc.

As a triangle, sequence begins:

0;

0, 1;

0, 1, 0;

0, 1, 0, 1;

0, 1, 0, 1, 0;

0, 1, 0, 1, 0, 1;

...

MAPLE

T := proc(n, k): if k mod 2 = 1 then return(1) else return(0) fi: end: seq(seq(T(n, k), k=0..n), n=0..13);  # Johannes W. Meijer, Aug 12 2015

CROSSREFS

As a simple triangular or square array virtually the only sequences which appear are A000004, A000012 and A000035.

Cf. A230135.

Sequence in context: A188037 A144598 A144606 * A219071 A072629 A164292

Adjacent sequences:  A060507 A060508 A060509 * A060511 A060512 A060513

KEYWORD

easy,nonn,tabl

AUTHOR

Henry Bottomley, Mar 22 2001

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified April 19 04:19 EDT 2019. Contains 322237 sequences. (Running on oeis4.)