login
A376582
Triangle of generalized Stirling numbers.
1
1, 5, 1, 26, 7, 1, 154, 47, 9, 1, 1044, 342, 74, 11, 1, 8028, 2754, 638, 107, 13, 1, 69264, 24552, 5944, 1066, 146, 15, 1, 663696, 241128, 60216, 11274, 1650, 191, 17, 1, 6999840, 2592720, 662640, 127860, 19524, 2414, 242, 19, 1, 80627040, 30334320, 7893840, 1557660, 245004, 31594, 3382, 299, 21, 1
OFFSET
0,2
FORMULA
T(m,n,k) = Sum_{i=0..n-k} Stirling1(i+m,m)*binomial(n+m+1,n-k-i)*(n+m-k)!/(i+m)!, for m=1.
EXAMPLE
Triangle starts:
[0] 1;
[1] 5, 1;
[2] 26, 7, 1;
[3] 154, 47, 9, 1;
[4] 1044, 342, 74, 11, 1;
[5] 8028, 2754, 638, 107, 13, 1;
[6] 69264, 24552, 5944, 1066, 146, 15, 1;
[7] 663696, 241128, 60216, 11274, 1650, 191, 17, 1;
MAPLE
T:=(m, n, k)->add(Stirling1(i+m, m)*binomial(n+m+1, n-k-i)*(n+m-k)!/(i+m)!, i=0..n-k): m:=1: seq(seq(T(m, n, k), k=0..n), n=0..10);
CROSSREFS
Column k: A001705 (k=0), A001711 (k=1), A001716 (k=2), A001721 (k=3), A051524 (k=4), A051545 (k=5), A051560 (k=6).
Cf. A094587 and A173333 for m=0.
Sequence in context: A264131 A075500 A096645 * A140713 A125906 A146414
KEYWORD
nonn,tabl
AUTHOR
STATUS
approved