login
Triangle of generalized Stirling numbers.
1

%I #19 Sep 30 2024 09:15:23

%S 1,5,1,26,7,1,154,47,9,1,1044,342,74,11,1,8028,2754,638,107,13,1,

%T 69264,24552,5944,1066,146,15,1,663696,241128,60216,11274,1650,191,17,

%U 1,6999840,2592720,662640,127860,19524,2414,242,19,1,80627040,30334320,7893840,1557660,245004,31594,3382,299,21,1

%N Triangle of generalized Stirling numbers.

%F T(m,n,k) = Sum_{i=0..n-k} Stirling1(i+m,m)*binomial(n+m+1,n-k-i)*(n+m-k)!/(i+m)!, for m=1.

%e Triangle starts:

%e [0] 1;

%e [1] 5, 1;

%e [2] 26, 7, 1;

%e [3] 154, 47, 9, 1;

%e [4] 1044, 342, 74, 11, 1;

%e [5] 8028, 2754, 638, 107, 13, 1;

%e [6] 69264, 24552, 5944, 1066, 146, 15, 1;

%e [7] 663696, 241128, 60216, 11274, 1650, 191, 17, 1;

%p T:=(m,n,k)->add(Stirling1(i+m,m)*binomial(n+m+1,n-k-i)*(n+m-k)!/(i+m)!,i=0..n-k): m:=1: seq(seq(T(m,n,k), k=0..n), n=0..10);

%Y Column k: A001705 (k=0), A001711 (k=1), A001716 (k=2), A001721 (k=3), A051524 (k=4), A051545 (k=5), A051560 (k=6).

%Y Cf. A094587 and A173333 for m=0.

%K nonn,tabl

%O 0,2

%A _Igor Victorovich Statsenko_, Sep 29 2024