|
|
A187966
|
|
Numbers n for which Fibonacci(n) mod n equals some nonzero Fibonacci(k) and k divides n.
|
|
1
|
|
|
2, 3, 4, 6, 10, 11, 14, 19, 20, 22, 29, 31, 38, 41, 54, 55, 56, 58, 59, 61, 62, 71, 76, 79, 80, 82, 89, 93, 95, 101, 109, 110, 118, 121, 122, 123, 124, 131, 139, 142, 145, 149, 151, 152, 153, 155, 158, 165, 174, 178, 179, 181, 190, 191, 196, 199, 202, 205, 209, 211, 213
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
1,1
|
|
COMMENTS
|
If Fibonacci(n) (mod n) = 1, then we assume that k=1 (even though Fibonacci(2) also equals 1). Subsequence of A182625.
|
|
LINKS
|
Andrew Howroyd, Table of n, a(n) for n = 1..2000
|
|
EXAMPLE
|
14 is in this sequence because fib(14)=377 is congruent to 13 (mod 14), 13=fib(7), and 7 divides 14.
|
|
MATHEMATICA
|
nn = 13; f = Table[Fibonacci[n], {n, nn}]; okQ[n_] := Module[{pos = Position[f, Mod[Fibonacci[n], n]]}, pos != {} && Mod[n, pos[[1, 1]]] == 0]; Select[Range[f[[-1]]], okQ] (* T. D. Noe, Apr 04 2011 *)
|
|
PROG
|
(PARI) ok(n)={my(m=fibonacci(n)%n); fordiv(n, k, my(t=fibonacci(k)); if(t>=m, return(t==m))); 0} \\ Andrew Howroyd, Feb 25 2018
|
|
CROSSREFS
|
Cf. A182625.
Sequence in context: A005457 A005453 A180242 * A280584 A225649 A225651
Adjacent sequences: A187963 A187964 A187965 * A187967 A187968 A187969
|
|
KEYWORD
|
nonn
|
|
AUTHOR
|
Carmine Suriano, Mar 30 2011
|
|
STATUS
|
approved
|
|
|
|