|
|
A187964
|
|
T(n,k)=Half the number of (n+2)X(k+2) binary arrays with no 3X3 subblock having a sum equal to any horizontal or vertical neighbor 3X3 subblock sum
|
|
10
|
|
|
256, 1408, 1408, 7744, 8768, 7744, 42592, 53728, 53728, 42592, 240064, 322128, 359488, 322128, 240064, 1353088, 2092928, 2292560, 2292560, 2092928, 1353088, 7626496, 13520976, 16890700, 15189800, 16890700, 13520976, 7626496, 42683776
(list;
table;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
1,1
|
|
COMMENTS
|
Table starts
........256.......1408.......7744......42592......240064.....1353088
.......1408.......8768......53728.....322128.....2092928....13520976
.......7744......53728.....359488....2292560....16890700...122812784
......42592.....322128....2292560...15189800...124421880...993918272
.....240064....2092928...16890700..124421880..1218772461.11568061339
....1353088...13520976..122812784..993918272.11568061339
....7626496...86157696..860108472.7359939574
...42683776..548059536.6116839902
..238891456.3471855360
.1337021536
|
|
LINKS
|
R. H. Hardin, Table of n, a(n) for n = 1..60
|
|
EXAMPLE
|
Some solutions for 5X4 with a(1,1)=0
..0..0..0..1....0..0..0..1....0..1..0..0....0..0..1..1....0..0..1..0
..0..0..0..0....1..1..1..1....1..0..0..0....0..0..0..1....0..0..1..1
..0..1..0..0....0..0..1..1....1..1..0..0....0..1..1..1....0..0..1..1
..1..0..0..0....1..0..1..1....1..1..1..0....0..0..0..1....1..1..1..1
..1..1..0..1....1..0..1..1....1..1..1..1....0..0..1..1....0..1..1..1
|
|
CROSSREFS
|
Sequence in context: A237315 A237309 A188865 * A187956 A237225 A237219
Adjacent sequences: A187961 A187962 A187963 * A187965 A187966 A187967
|
|
KEYWORD
|
nonn,tabl
|
|
AUTHOR
|
R. H. Hardin Mar 16 2011
|
|
STATUS
|
approved
|
|
|
|