%I
%S 256,1408,1408,7744,8768,7744,42592,53728,53728,42592,240064,322128,
%T 359488,322128,240064,1353088,2092928,2292560,2292560,2092928,1353088,
%U 7626496,13520976,16890700,15189800,16890700,13520976,7626496,42683776
%N T(n,k)=Half the number of (n+2)X(k+2) binary arrays with no 3X3 subblock having a sum equal to any horizontal or vertical neighbor 3X3 subblock sum
%C Table starts
%C ........256.......1408.......7744......42592......240064.....1353088
%C .......1408.......8768......53728.....322128.....2092928....13520976
%C .......7744......53728.....359488....2292560....16890700...122812784
%C ......42592.....322128....2292560...15189800...124421880...993918272
%C .....240064....2092928...16890700..124421880..1218772461.11568061339
%C ....1353088...13520976..122812784..993918272.11568061339
%C ....7626496...86157696..860108472.7359939574
%C ...42683776..548059536.6116839902
%C ..238891456.3471855360
%C .1337021536
%H R. H. Hardin, <a href="/A187964/b187964.txt">Table of n, a(n) for n = 1..60</a>
%e Some solutions for 5X4 with a(1,1)=0
%e ..0..0..0..1....0..0..0..1....0..1..0..0....0..0..1..1....0..0..1..0
%e ..0..0..0..0....1..1..1..1....1..0..0..0....0..0..0..1....0..0..1..1
%e ..0..1..0..0....0..0..1..1....1..1..0..0....0..1..1..1....0..0..1..1
%e ..1..0..0..0....1..0..1..1....1..1..1..0....0..0..0..1....1..1..1..1
%e ..1..1..0..1....1..0..1..1....1..1..1..1....0..0..1..1....0..1..1..1
%K nonn,tabl
%O 1,1
%A _R. H. Hardin_ Mar 16 2011
|