login
A103588
1's complement of A103582.
5
0, 1, 0, 0, 0, 0, 1, 1, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1, 1, 1, 0, 0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 0, 1, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0
OFFSET
0,1
COMMENTS
Comment from Jared Benjamin Ricks (jaredricks(AT)yahoo.com), Jan 31 2009: (Start)
This sequence be also be obtained in the following way. Write numbers in binary from left to right and read the resulting array by antidiagonals upwards:
0 : (0, 0, 0, 0, 0, 0, 0, ...)
1 : (1, 0, 0, 0, 0, 0, 0, ...)
2 : (0, 1, 0, 0, 0, 0, 0, ...)
3 : (1, 1, 0, 0, 0, 0, 0, ...)
4 : (0, 0, 1, 0, 0, 0, 0, ...)
5 : (1, 0, 1, 0, 0, 0, 0, ...)
6 : (0, 1, 1, 0, 0, 0, 0, ...)
7 : (1, 1, 1, 0, 0, 0, 0, ...)
... (End)
LINKS
David Applegate, Benoit Cloitre, Philippe Deléham and N. J. A. Sloane, Sloping binary numbers: a new sequence related to the binary numbers [pdf, ps].
EXAMPLE
Triangle begins:
0
1 0
0 0 0
1 1 0 0
0 1 0 0 0
1 0 0 0 0 0
0 0 1 0 0 0 0
1 1 1 0 0 0 0 0
0 1 1 0 0 0 0 0 0
1 0 1 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0
1 1 0 1 0 0 0 0 0 0 0 0
CROSSREFS
Cf. A103582, A103581, A103589. Considered as a triangle, obtained by reversing the rows of the triangle in A103589.
Sequence in context: A238469 A288596 A284745 * A153638 A122415 A241666
KEYWORD
nonn,easy,tabl
AUTHOR
Philippe Deléham, Mar 24 2005
EXTENSIONS
More terms from Robert G. Wilson v and Benoit Cloitre, Mar 26 2005
Corrected by N. J. A. Sloane, Apr 19, 2005
Rechecked by David Applegate, Apr 19 2005.
STATUS
approved