login
This site is supported by donations to The OEIS Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A003152 A Beatty sequence: a(n) = floor(n*(1+1/sqrt(2))).
(Formerly M2392)
12
1, 3, 5, 6, 8, 10, 11, 13, 15, 17, 18, 20, 22, 23, 25, 27, 29, 30, 32, 34, 35, 37, 39, 40, 42, 44, 46, 47, 49, 51, 52, 54, 56, 58, 59, 61, 63, 64, 66, 68, 69, 71, 73, 75, 76, 78, 80, 81, 83, 85, 87, 88, 90, 92, 93, 95, 97, 99, 100, 102, 104, 105, 107, 109, 110, 112, 114, 116 (list; graph; refs; listen; history; text; internal format)
OFFSET

1,2

REFERENCES

N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

LINKS

G. C. Greubel, Table of n, a(n) for n = 1..10000

L. Carlitz, R. Scoville and V. E. Hoggatt, Jr. Pellian representatives Fibonacci Quarterly, 10, issue 5, 1972, 449-488.

J. N. Cooper and A. W. N. Riasanovsky, On the Reciprocal of the Binary Generating Function for the Sum of Divisors, 2012; J. Int. Seq. 16 (2013) #13.1.8

Index entries for sequences related to Beatty sequences

MAPLE

Digits := 100: t := evalf(1+sin(Pi/4)): A:= n->floor(t*n): seq(floor((t*n)), n=1..68); # Zerinvary Lajos, Mar 27 2009

MATHEMATICA

Table[Floor[n (1 + 1/Sqrt[2])], {n, 70}] (* Vincenzo Librandi, Dec 26 2015 *)

PROG

(MAGMA) [Floor(n*(1+1/Sqrt(2))): n in [1..70]]; // Vincenzo Librandi, Dec 26 2015

CROSSREFS

Complement of A003151.

Cf. A109250.

Sequence in context: A138235 A059541 A189682 * A283965 A193599 A068125

Adjacent sequences:  A003149 A003150 A003151 * A003153 A003154 A003155

KEYWORD

nonn,easy

AUTHOR

N. J. A. Sloane

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified August 20 08:50 EDT 2018. Contains 313914 sequences. (Running on oeis4.)