login
A317204
Expansion of n in the p-system based on convergents to sqrt(2).
14
0, 1, 10, 11, 20, 100, 101, 110, 111, 120, 200, 201, 1000, 1001, 1010, 1011, 1020, 1100, 1101, 1110, 1111, 1120, 1200, 1201, 2000, 2001, 2010, 2011, 2020, 10000, 10001, 10010, 10011, 10020, 10100, 10101, 10110, 10111, 10120, 10200, 10201, 11000, 11001, 11010, 11011
OFFSET
0,3
COMMENTS
This is the minimal (or greedy) representation of nonnegative numbers in terms of the positive Pell numbers (A000129). - Amiram Eldar, Mar 12 2022
REFERENCES
A. F. Horadam, Zeckendorf representations of positive and negative integers by Pell numbers, Applications of Fibonacci Numbers, Springer, Dordrecht, 1993, pp. 305-316.
LINKS
L. Carlitz, Richard Scoville, and V. E. Hoggatt, Jr., Pellian Representations, The Fibonacci Quarterly, Vol. 10, No. 5 (1972), pp. 449-488.
Aviezri S. Fraenkel, How to beat your Wythoff games' opponent on three fronts, Amer. Math. Monthly, Vol. 89, No. 6 (1982), pp. 353-361. See Table 2.
MATHEMATICA
pell[1] = 1; pell[2] = 2; pell[n_] := pell[n] = 2*pell[n - 1] + pell[n - 2]; pellp[n_] := Module[{s = {}, m = n, k}, While[m > 0, k = 1; While[pell[k] <= m, k++]; k--; AppendTo[s, k]; m -= pell[k]; k = 1]; FromDigits @ IntegerDigits[Total[3^(s - 1)], 3]]; Array[pellp, 50, 0] (* Amiram Eldar, Mar 12 2022 *)
PROG
(PARI) a(n) = { my (p=[1, 2]); for (k=2, oo, if (n<=p[k], my (v=0, d); while (n, v+=10^k*d=n\p[k]; n-=d*p[k]; k--); return (v/10), p = concat(p, 2*p[k]+p[k-1]))) } \\ Rémy Sigrist, Mar 12 2022
CROSSREFS
Similar to, but different from, A014418.
Similar sequences: A014417, A130310, A278038.
Sequence in context: A306960 A178361 A014418 * A089591 A064039 A255536
KEYWORD
nonn,base
AUTHOR
N. J. A. Sloane, Aug 07 2018
EXTENSIONS
More terms from Amiram Eldar, Mar 12 2022
STATUS
approved