OFFSET
0,3
COMMENTS
This is the minimal (or greedy) representation of nonnegative numbers in terms of the positive Pell numbers (A000129). - Amiram Eldar, Mar 12 2022
REFERENCES
A. F. Horadam, Zeckendorf representations of positive and negative integers by Pell numbers, Applications of Fibonacci Numbers, Springer, Dordrecht, 1993, pp. 305-316.
LINKS
Amiram Eldar, Table of n, a(n) for n = 0..10000
L. Carlitz, Richard Scoville, and V. E. Hoggatt, Jr., Pellian Representations, The Fibonacci Quarterly, Vol. 10, No. 5 (1972), pp. 449-488.
Aviezri S. Fraenkel, How to beat your Wythoff games' opponent on three fronts, Amer. Math. Monthly, Vol. 89, No. 6 (1982), pp. 353-361. See Table 2.
MATHEMATICA
pell[1] = 1; pell[2] = 2; pell[n_] := pell[n] = 2*pell[n - 1] + pell[n - 2]; pellp[n_] := Module[{s = {}, m = n, k}, While[m > 0, k = 1; While[pell[k] <= m, k++]; k--; AppendTo[s, k]; m -= pell[k]; k = 1]; FromDigits @ IntegerDigits[Total[3^(s - 1)], 3]]; Array[pellp, 50, 0] (* Amiram Eldar, Mar 12 2022 *)
PROG
(PARI) a(n) = { my (p=[1, 2]); for (k=2, oo, if (n<=p[k], my (v=0, d); while (n, v+=10^k*d=n\p[k]; n-=d*p[k]; k--); return (v/10), p = concat(p, 2*p[k]+p[k-1]))) } \\ Rémy Sigrist, Mar 12 2022
CROSSREFS
KEYWORD
nonn,base
AUTHOR
N. J. A. Sloane, Aug 07 2018
EXTENSIONS
More terms from Amiram Eldar, Mar 12 2022
STATUS
approved