Reminder: The OEIS is hiring a new managing editor, and the application deadline is January 26.
%I #30 Dec 27 2021 08:25:57
%S 12,27,42,57,72,87,92,102,107,117,122,132,137,147,152,162,167,172,177,
%T 182,187,192,197,202,212,217,227,232,242,247,252,257,262,267,277,282,
%U 292,297,307,312,322,327,332,342,347,357,362,372,377,387,392,402,407,412,417
%N Numbers that are the sum of 12 positive 4th powers.
%C a(88) = 636 = 5^4 + 11 and a(91) = 651 = 5^4 + 2^4 + 10 are the first two terms not congruent to 2 or 7 (mod 10). - _M. F. Hasler_, Aug 03 2020
%H David A. Corneth, <a href="/A003346/b003346.txt">Table of n, a(n) for n = 1..10000</a> (first 1000 terms from T. D. Noe)
%H Eric Weisstein's World of Mathematics, <a href="http://mathworld.wolfram.com/BiquadraticNumber.html">Biquadratic Number.</a>
%e From _David A. Corneth_, Aug 03 2020: (Start)
%e 3740 is in the sequence as 3740 = 1^4 + 1^4 + 1^4 + 1^4 + 1^4 + 1^4 + 1^4 + 1^4 + 3^4 + 5^4 + 5^4 + 7^4.
%e 4690 is in the sequence as 4690 = 2^4 + 2^4 + 2^4 + 2^4 + 2^4 + 4^4 + 4^4 + 4^4 + 5^4 + 5^4 + 6^4 + 6^4.
%e 7193 is in the sequence as 7193 = 2^4 + 4^4 + 5^4 + 5^4 + 5^4 + 5^4 + 5^4 + 5^4 + 5^4 + 5^4 + 5^4 + 6^4. (End)
%o (PARI) (A003346_upto(N, k=12, m=4)=[i|i<-[1..#N=sum(n=1, sqrtnint(N, m), 'x^n^m, O('x^N))^k], polcoef(N, i)])(500) \\ 2nd & 3rd optional arg allow to get other sequences of this group. See A003333 for alternate code. - _M. F. Hasler_, Aug 03 2020
%o (Python)
%o from itertools import count, takewhile, combinations_with_replacement as mc
%o def aupto(limit):
%o qd = takewhile(lambda x: x <= limit, (k**4 for k in count(1)))
%o ss = set(sum(c) for c in mc(qd, 12))
%o return sorted(s for s in ss if s <= limit)
%o print(aupto(417)) # _Michael S. Branicky_, Dec 27 2021
%Y Cf. A000583 (4th powers).
%Y Other numbers that are the sum of k positive m-th powers:
%Y A000404 (k=2, m=2), A000408 (3, 2), A000414 (4, 2), A047700 (k=5, m=2),
%Y A003325 (k=2, m=3), A003072 (k=3, m=3), A003327 .. A003335 (k=4..12, m=3),
%Y A003336 .. A003346 (k=2..12, m=4), A003347 .. A003357 (k=2..12, m=5),
%Y A003358 .. A003368 (k=2..12, m=6), A003369 .. A003379 (k=2..12, m=7),
%Y A003380 .. A003390 (k=2..12, m=8), A003391 .. A004801 (k=2..12, m=9),
%Y A004802 .. A004812 (k=2..12, m=10), A004813 .. A004823 (k=2..12, m=11).
%K nonn,easy
%O 1,1
%A _N. J. A. Sloane_