login
The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A000411 Generalized tangent numbers d(6,n).
(Formerly M4312 N1805)
3
6, 522, 152166, 93241002, 97949265606, 157201459863882, 357802951084619046, 1096291279711115037162, 4350684698032741048452486, 21709332137467778453687752842, 133032729004732721625426681085926, 982136301747914281420205946546842922 (list; graph; refs; listen; history; text; internal format)
OFFSET

1,1

REFERENCES

N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).

N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

LINKS

Lars Blomberg, Table of n, a(n) for n = 1..184

D. Shanks, Generalized Euler and class numbers. Math. Comp. 21 (1967)  689-694.

D. Shanks, Corrigenda to: "Generalized Euler and class numbers", Math. Comp. 22 (1968), 699

D. Shanks, Generalized Euler and class numbers, Math. Comp. 21 (1967), 689-694; 22 (1968), 699. [Annotated scanned copy]

MATHEMATICA

nmax = 15; km0 = 10; Clear[dd]; L[a_, s_, km_] := Sum[JacobiSymbol[-a, 2 k + 1]/(2 k + 1)^s, {k, 0, km}]; d[a_ /; a > 1, n_, km_] := (2 n - 1)! L[-a, 2 n, km] (2 a/Pi)^(2 n)/Sqrt[a] // Round; dd[km_] := dd[km] = Table[d[6, n, km], {n, 1, nmax}]; dd[km0]; dd[km = 2 km0]; While[dd[km] != dd[km/2, km = 2 km]]; A000411 = dd[km] (* Jean-Fran├žois Alcover, Feb 08 2016 *)

CROSSREFS

Cf. A000320.

Sequence in context: A250391 A003395 A222607 * A180431 A202967 A230330

Adjacent sequences:  A000408 A000409 A000410 * A000412 A000413 A000414

KEYWORD

nonn

AUTHOR

N. J. A. Sloane

EXTENSIONS

a(10)-a(12) from Lars Blomberg, Sep 07 2015

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified April 7 19:49 EDT 2020. Contains 333306 sequences. (Running on oeis4.)