login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 60, we have over 367,000 sequences, and we’ve crossed 11,000 citations (which often say “discovered thanks to the OEIS”).

Other ways to Give
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A349264 Generalized Euler numbers, a(n) = n!*[x^n](sec(4*x)*(sin(4*x) + 1)). 23
1, 4, 16, 128, 1280, 16384, 249856, 4456448, 90767360, 2080374784, 52975108096, 1483911200768, 45344872202240, 1501108249821184, 53515555843342336, 2044143848640217088, 83285910482761809920, 3605459138582973251584, 165262072909347030040576, 7995891855149741436305408 (list; graph; refs; listen; history; text; internal format)
OFFSET
0,2
LINKS
William Y. C. Chen, Neil J. Y. Fan, Jeffrey Y. T. Jia, The generating function for the Dirichlet series Lm(s), Mathematics of Computation, Vol. 81, No. 278, pp. 1005-1023, April 2012.
Ruth Lawrence and Don Zagier, Modular forms and quantum invariants of 3-manifolds, Asian J. Math. 3 (1999), no. 1, 93-107.
D. Shanks, Generalized Euler and class numbers, Math. Comp. 21 (1967) 689-694.
D. Shanks, Corrigendum: Generalized Euler and class numbers, Math. Comp. 22, (1968) 699.
D. Shanks, Generalized Euler and class numbers, Math. Comp. 21 (1967), 689-694; 22 (1968), 699. [Annotated scanned copy]
EXAMPLE
Exponential generating functions of generalized Euler numbers in context:
egf1 = sec(1*x)*(sin(x) + 1).
egf2 = sec(2*x)*(sin(x) + cos(x)).
egf3 = sec(3*x)*(sin(2*x) + cos(x)).
egf4 = sec(4*x)*(sin(4*x) + 1).
egf5 = sec(5*x)*(sin(x) + sin(3*x) + cos(2*x) + cos(4*x)).
egf6 = sec(6*x)*(sin(x) + sin(5*x) + cos(x) + cos(5*x)).
egf7 = sec(7*x)*(-sin(2*x) + sin(4*x) + sin(6*x) + cos(x) + cos(3*x) - cos(5*x)).
egf8 = sec(8*x)*2*(sin(4*x) + cos(4*x)).
egf9 = sec(9*x)*(4*sin(3*x) + 2)*cos(3*x)^2.
MAPLE
sec(4*x)*(sin(4*x) + 1): series(%, x, 20): seq(n!*coeff(%, x, n), n = 0..19);
MATHEMATICA
m = 19; CoefficientList[Series[Sec[4*x] * (Sin[4*x] + 1), {x, 0, m}], x] * Range[0, m]! (* Amiram Eldar, Nov 20 2021 *)
PROG
(PARI) seq(n)={my(x='x + O('x^(n+1))); Vec(serlaplace((sin(4*x) + 1)/cos(4*x)))} \\ Andrew Howroyd, Nov 20 2021
CROSSREFS
Sequence in context: A358083 A323552 A363443 * A061129 A061131 A136651
KEYWORD
nonn
AUTHOR
Peter Luschny, Nov 20 2021
STATUS
approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified December 1 23:26 EST 2023. Contains 367503 sequences. (Running on oeis4.)