The OEIS is supported by the many generous donors to the OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A136651 Self-convolution of A014070: a(n) = Sum_{k=0..n} C(2^k,k)*C(2^(n-k),n-k). 0
 1, 4, 16, 136, 3900, 410704, 150779216, 189354108224, 819706419291728, 12417873698752685696, 668556572391910046409088, 129665687275486846550512590336, 91623983383737723477835280780455168, 238057598315149125515904595621291745671168, 2291332225550784443587332334013451028612830795776 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,2 LINKS Table of n, a(n) for n=0..14. FORMULA G.f.: A(x) = Sum_{n>=0} (1/n!)*Sum_{k=0..n} C(n,k) * log(1+2^k*x)^k * log(1+2^(n-k)*x)^(n-k). a(n) ~ 2^(n^2+1) / n!. - Vaclav Kotesovec, Jul 02 2016 MATHEMATICA Table[Sum[Binomial[2^k, k]*Binomial[2^(n-k), n-k], {k, 0, n}], {n, 0, 15}] (* Vaclav Kotesovec, Jul 02 2016 *) PROG (PARI) {a(n) = sum(k=0, n, binomial(2^k, k) * binomial(2^(n-k), n-k) )} for(n=0, 20, print1(a(n), ", ")) (PARI) {a(n) = polcoeff( sum(m=0, n, sum(k=0, m, log(1+2^k*x +x*O(x^n))^k/k! * log(1+2^(m-k)*x +x*O(x^n))^(m-k) / (m-k)! ) ), n)} for(n=0, 20, print1(a(n), ", ")) CROSSREFS Cf. A014070 (C(2^n, n)). Sequence in context: A349264 A061129 A061131 * A195899 A362143 A358289 Adjacent sequences: A136648 A136649 A136650 * A136652 A136653 A136654 KEYWORD nonn AUTHOR Paul D. Hanna, Jan 16 2008 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified September 22 01:06 EDT 2023. Contains 365503 sequences. (Running on oeis4.)