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Generalized Euler and Class Numbers So% e
By Daniel Shanks 1% ‘ /

1. Introduction. In [1] we discussed the Dirichlet series

(1) Lu(s) = 2 (%—j 1) 2k + 1)~ [ S3T1
where (—a/(2k + 1)) is the J acobi symbol. We defined Ca,n and D, .. by 436

) ( - )’-’nH ( - )2n q-q O .
_ , _(~ oy — [T }
(2) L.(2n + 1) a VaCin L_.(2n) p Va Da,a l 37 7
and showed that these coefficlents are rational for all @ = 1, 2, 3, --- and all ‘q ¢

n=0,12 --+. Wealso showed how to compute them. We now wish to simplify 5—(—9/
these coefficients and calculations. Let ' W

A5
-

2n4-1
L.Gn+1) = (;’—a> Vva (?2*;5! (n=0,1,2 -

» o 1 =\ din
La(n) =3 \?) Gn = 1)

We now assert that the ¢, and da. are integers. Further, they satisfy simple re-

@) 2n
L_.(2n) =(§7"&_> Va (ana—,n o n=123,-" ) fora > 1, and ( ,
@ nentn=3(5) " Gn @monn ) ST
4 = »
. 33

h=12723"

el

currences on the variable n, and this simplifies their computation. j 82
Consider first a short table of ¢an: ; 2@
n
| o1/
a 0 1 2 3
1 1 —~1 5 g1 — stnd Euler nos
2 1, 3 «;//fm — mm—h Y, AV
3 1 -8~ 35 0/-38528 W36
4 1 16//——128 249856 - 490 ‘/
5 2 ? 30 3522 1066500 — 19 7 o/
. 6 2 46 7970 3487246 =1 92 v
7 | o L 64 15872 0403504 =Sk ALUYOREY
8 2 96 29184 22880956 < 2634496 <\
2 126 49410 48649086 —{45., /
0 P 2 158 79042 /

06448478 “‘W
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690 DANIEL SHANKS

The first row are the Euler numbers:

(5) Cin=E,,

which are also called secant numbers since

@ w2n
(6) SeC'w=n=EoE,.an—)!.

The first column are the class numbers; that is, there are ¢, inequivalent classes of
primitive binary quadratic forms

Cu’ + 2Buw + A»*
with
AC — B* =q,
the principal form of which is represented by
u' + av’.
Our two-dimensional array ¢, therefore generalizes both the Euler numbers
and the class numbers—thus our title.

Similarly, a short table of d, , is shown below. (The number D, o in (2) actually
vanishes for all a, but we do not define d, ,.)

Aan

Y) n
1 2

!
:

w

4

o a5

1 2 16 272 13
I T it ) 24611«&-_6#/5/?
b lbeg

P ———

-

///

3362 515086 — =

4 128/”"_:: 16381 74456448 — 3 IS’////.%
i 4—_ o972 55744 23750912 — 3 2. O /..//r/

6= 522 152166 93241002 — 1L v |

{‘8 —~ 1904 355688 206327464 ~— :

8 1408 739328 806453248 — (U4 '

2160 1415232 1951153920 — |

12
JU 1

\«x\x@mmwwr—« s

\'_D- 10 4 3154 2529614 / 4300685074 = \
e e e 1Y IRy (DT |
j This time the ghst ‘Pgw coggs:gs/u)fhe so-galled tangent numbers (S\ '8)./
SN / (){éiir

dl,n = Tn 3
since '

n=] (2n

2. Recurrences. That these numbers are all integers follows from certain recur-
rences that they satisfy, and these, in turn, follow from known properties of the
Euler polynomials E,(z). We have [2] the generator:

@) 2" _ S E@E
e +1 A T Al

o

o e fagt A A22560

il
s

and the known o

(10)

where [1, Eq. (18)]

(11)

It follows, if we put
in (9) that

(12)

Now, ciearly,

(13)

8o that from (12) an
indeed the secant an
If @ is divisible b;

(14)
with b square-free, w
(15)

the product being tak
It follows, from (!

Cam =1

(16)
-da.- =1

if b > 1, and, from (4

a7




. ¢4.0 inequivalent classes of

< both the Euler numbers

n.umber Da.oin (2) actually

—@—

272

24611
515086
4456448
23750912
93241002
206327464
806453248
1951153920
4300685074

-ni numbers

follows from certain recur-
1 known properties of the
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and the known Fourier expansions:

Egn(x) = (——‘I_)Zi(—lz—m—‘ Sont1 (%) y

(10) . ,
Buste) = 8GR = Dl (2),

where [1, Eq. (18)]
>, sin 2r(2k + 1)z
Z% 2k + 1)

_ ~cos2n(2k + )z
C.(x) = ; TRt

S.(z) =

(11)

1t follows, if we put
z=2y and t=20vi,
in (9)) that '
cosv(l — 4y) 20\
R N ED

(12> CoS v n=0

sinv(l —4y) “Z (20 )2"'102 @)

s
4 cos v =1
Now, clearly,
(13) Li(s) = S.(3) and L.i(s) = C.(0),

so that from (12) and (4), together with (6) and (8), we find that 1. and d; . are
indeed the secant and tangent numbers, respectively.

~—— 1T a is divisible by a square > 1:
(14) a = bm’
with b square-free, we have [1, Eq. (23)]

(15) La(s) = Lo(s) I}n[ (;—")p“]

the product being taken over all odd primes p. (if any) that divide m.
It follows, from (3), that

[ T MR
e [ T B {2 O | D

if b > 1, and, from (4), that

Cem o T - (5

| 2n B
dm'.n = %mgnfl[m H pi—l] H [P- ]dlvn

(16)

a7




692 _ DANIEL SHANKS

if b = 1. In any case, the cq,, and ds . are integral multiples of the ¢y, and dpn,
respectively.

It remains, then, to compute ¢s » and ds » for square-free b > 1. We showed, in
{1], that for such b we have

Ly(2n + 1) = % E €51 (Yr)
(18) )

. 2
L_,(2n) = b ; &Ca(Yr)
where in the linear combinations on the right the ¢ are Jacobi symbols, and the y;
are rational numbers, both dependent upon b. In all such cases, we therefore have
from (12) the generators:
> e cos bw(l — 4y,) ®
% - Z w Com
(19) cos bw = 2n)!
> e sin bw(l — 4y;)
k —

cos bw

© 2n—1 db N y

Y 2n — 1)t

|
M

where we have put » = bw. Equating powers of w gives the recurrences: »
n 2n = 2\ 7 2n
(1 S albt = 11" = 3 eoneit =1y 21,
k =0 1
= f2n — 1
( 1>n~ Z fl-[b(]- - 4yk)]2n - Zodb,n—i(—b2)1( 2 ):

where the rightmost symbols are the binomial coefficients. Let us abbreviate

Z Cb N— 1 ( b2 ( > = eb n
= oavif2n — 1Y)
;db.n_f(*b ) ( 9 ) = Do,

and note that the coefficient of ¢, (ds,.) in these linear combinations is always 1.
Inserting now the appropriate values of ¢ and y, from [1], we have the recur-
rences

(20)

1)

(b—1)/2 2 .
Com = (—1)" D (—b—>[b — 4k if b=3 (mod4),
k=1
Com = (—1)" > ( )[b — 2k + D)™ if b3 (mod4),
(22> 2k+1<b
) (b—l)/° k
Don 1)"‘1 (F)[b 1 if b=1 (mod4),

( 1 n—-1 <
2A+l<b

As examples, let us list:

) b— 2+ DI if b#1 (mod 4) .

-

£ e

a —

- (23) Dy

C.,
Ci.
Cs.
Cen
Cra
elﬁ.n

5)3.-‘
1)‘,-\
3)0 n
fi)’“
3)lﬂ.n

By such relatively «
tion of the cym (dym) 1
are all of these number

Further, for b =
tangent numbers, cf. [

(24) (P
and our Egs. (22) are «

3. Comments. We }
shown how they may 1
theory of these number

A. Some authors hx
coalesce into a single se

(25) v Cr,

We note, from (23), the
or

is possible, because the
= 3, 5, 7, etc., the g,
not seem desirable to at
B. It is clear that p1
generally through their
have been initiated by (
C. Finally, we note
given a combinatorial ir

(26)

where the notation hert
“up-down” permutation




Itiples of the ¢s,» and do,

-iree b > 1. We showed, in

Yi) »

2y

Jacobi symbols, and the yx
~h cases, we therefore have

~
—r

db.n 3
2 — I)!

= the recurrences:

2y 2n
R <2i>’
1

uts. Let us abbreviate
Sb.n ]

)b.n y

r combinations is always 1.
rom [1], we have the recur-

if b=3 (mod4),
if b#3 (mod4),
if b=1 (mod4),

Ui b#1 (mod4).

.
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e2m = (_1)» ]
Cin = ("1)" ’

Con = (= Lr{a + 2,

ee.n = (_1)"[52" + 12"] y
Crn = (—1)73% 4 12 — 5]
Caom = (—1)lg — 720 4 87 4 17,

(23) "D2yﬂ = (—'1)"—1 3
Dy = (—1)w120n1 :
ﬁ)s.n — (_1)1:—1[121:—1._*_ 32n—1] ,
Den = (—1)1‘_1[52’._1 + 12'.—1] ’
Dy, = (— 1)1 6 + 4201 . 92=1]
5)10"" p— (_1)ﬂ—1[92ﬂ—1 _|_ 72n—1 — 32n—l + 12"——1] |

By such relatively simple recurrences we express s (dv.) as & linear combina-
tion of the cym (do.m) With m < n, and since ¢b.o and dy,; are clearly integers, so
are all of these numbers integers.

Further, for b = 1, we have the well-known recurrences for the secant and
tangent numbers, cf. [3]:

(24) Ci. =0, Dip = (=11, nz1l)

and our Egs. (22) are merely the appropriate generalization of these.

3. Comments. We have shown that the ¢aa and b, . are integers, and we have
shown how they may be computed. We do not wish here to develop an elaborate
theory of these numbers, and will merely close with a few brief remarks.

A. Some authors have used a notation in which the secant and tangent number
coalesce into a single series, thus:

(25) Cin = En = f12n ’ dl,n = T’n = A2n—1 .
We note, from (23), that a similar joining of
C2nand dza — l S & 6

or '
conand den = > , §37

is possible, because their recurrences fit together smoothly. But, in general, say,
a = 3,5, 7, etc., the c.» and dan Obey quite different laws, and therefore it does
1ot seem desirable to attempt a joining of the complete can and d, » arrays.

B. It is clear that properties of these numbers (mod m) may be attacked fairly
generally through their recurrences (22). In a less systematic way such studies
have been initiated by Glaisher [4].

C. Finally, we note that recently D. J. Newman and W. Weissblum {5] have
given a combinatorial interpretation of the A, in '

3

, — , 1t
(26) _ sect + tant = ZA",T!r

n=0

where the notation here agrees with (25). They assert that A, is the number of
“yp-down’” permutations of 1,2, -+-,n. Thus Ay = €12 = 3 because
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2143, 3142, 3241, 4132, and 49231

are the five ways in which 1234 may be permuted in which successive differences
are alternatingly positive and negative. Presumably, reversals are not counted,
c.g., 3412, This raises the question whether all of the Cam and d, » may not have
some combinatorial interpretation.

David Taylor Model Basin
Washington, D. C. 20007
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CORRIGENDA

DanieL SHaNKS & Joun W. WrexcH, Jr., “The caleulation of certain Dirichlet
scries,” Math. Comp., v. 17, 1963, pp. 136-154.

Tor previous corrigenda see 7b7d., p. 488 and v. 22, 1968, p. 246.

Recent developments in computing the L,(s) functions have uncovered several
other errors here: _

In Table 1, for the numerator of C144 read 191215117629.

In Tables 6, 10, 14, read

Lo(8) = 1.00014 97087 74093 14113 08011 23529
Le(8) = 1.00000 27367 00387 59804 34339 23255
L1s(8) = 0.99999 72701 65836 15391 22169 44117 .

Momay Lat, D.S., JW.W.

DANIEL SHANKS, “Generalized Euler and class numbers,” /ath. Comp., v. 21,
1967, pp. 689-694.

On p. 689, the value given for ¢s 3 is incorrect ; for 22880250, read 22634496.
' D. 8.

StEFAN BErGMAN & Bruck CHapumEirs, “Procedure for conformal mapping
of triply-connected domains,” Math. Comp., v. 21, 1967, pp. 527-542.

On p. 527, delete the exponent 1/2 in equation (4).
STEFAN BERGMAN

- MosHE Mangap, “Some limiting values and two error estimation procedures
for power series approximations,” Math. Comp., v. 21, 1967, pp. +23—430.

It was brought to my attention that there are some similarities between certain
portions of my above paper and the Scientific Note by Ove Ditlevsen, “A remark
on the Lagrangian remainder in Taylor’s formula,” BIT, v. 5, 1963, pp. 211-213.
Indeed the similarities are as follows:

(1) My results on p. 426 (line 8 from the bottom of the page to line 3 from the
bottom of that page) are similar to those of O. Ditlevsen’s appearing on p. 212
(lines 3 through 10).

(2) Example 2 of my paper on pp. 428-429 is very similar to the example of O.
Ditlevsen’s note appearing on pp. 212-213.

. MosHE MANGAD
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