login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A250391
Number of length 5+3 0..n arrays with no four consecutive terms having the maximum of any two terms equal to the minimum of the remaining two terms.
1
6, 514, 9480, 82398, 457366, 1886948, 6308960, 18038628, 45704886, 105193902, 223903240, 446650386, 843619686, 1520772064, 2633182208, 4401808232, 7134239142, 11250005754, 17311081032, 26058236134, 38453958774, 55732680828
OFFSET
1,1
COMMENTS
Row 5 of A250387.
LINKS
FORMULA
Empirical: a(n) = n^8 + (1/5)*n^7 + (563/180)*n^6 + (19/30)*n^5 + (1/9)*n^4 + (9/5)*n^3 - (223/180)*n^2 + (11/30)*n.
Conjectures from Colin Barker, Aug 21 2017: (Start)
G.f.: 2*x*(3 + 230*x + 2535*x^2 + 7539*x^3 + 7322*x^4 + 2335*x^5 + 196*x^6) / (1 - x)^9.
a(n) = 9*a(n-1) - 36*a(n-2) + 84*a(n-3) - 126*a(n-4) + 126*a(n-5) - 84*a(n-6) + 36*a(n-7) - 9*a(n-8) + a(n-9) for n>9.
(End)
EXAMPLE
Some solutions for n=4:
..1....2....0....1....0....3....2....1....4....0....1....4....1....3....0....3
..2....2....1....4....3....2....2....2....3....3....0....3....4....4....3....0
..0....1....0....1....2....0....3....4....1....1....4....1....2....1....2....2
..2....1....4....3....1....1....3....1....1....2....3....0....1....4....1....4
..1....4....3....0....4....0....0....4....3....1....2....4....0....3....0....1
..0....3....4....0....3....3....0....2....3....4....1....2....2....2....2....4
..2....2....0....2....1....4....3....3....1....0....3....3....0....4....4....2
..2....2....0....1....4....0....2....4....2....0....0....2....3....4....0....4
CROSSREFS
Sequence in context: A290937 A364482 A365926 * A003395 A222607 A000411
KEYWORD
nonn
AUTHOR
R. H. Hardin, Nov 20 2014
STATUS
approved